Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation
Abstract
:1. Introduction
2. Computational Methods and Models
3. Results and Discussion
3.1. Structure of Surface Adsorption
3.2. Electronic Structure
3.3. Optical Absorption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Graetzel, M.; Howe, R.F. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J. Phys. Chem. 1990, 94, 2566–2572. [Google Scholar] [CrossRef]
- Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. Cheminform 2004, 35, 8992–8995. [Google Scholar] [CrossRef]
- Phan, T.D.N.; Pham, H.D.; Cuong, T.V.; Kim, E.J.; Kim, S.; Shin, E.W. A simple hydrothermal preparation of TiO2 nanomaterials using concentrated hydrochloric acid. J. Cryst. Growth 2009, 312, 79–85. [Google Scholar] [CrossRef]
- Sun, Q.; Xu, Y. Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J. Phys. Chem. C 2010, 114, 18911–18918. [Google Scholar] [CrossRef]
- Pan, C.; Takata, T.; Domen, K. Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chemistry 2016, 22, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Filippo, D.A.; Cristiana, D.V.; Simona, F.; Andrea, V.; Annabella, S. Theoretical studies on anatase and less common TiO2 phases: Bulk, surfaces, and nanomaterials. Chem. Rev. 2014, 114, 9708–9753. [Google Scholar]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 20175001–20175017. [Google Scholar] [CrossRef]
- Jorge, O.G.; Stephan, L.; Alex, Z. Atomic control of conductivity versus ferromagnetism in wide-gap oxides via selective doping: V, Nb, Ta in anatase TiO2. Phys. Rev. Lett. 2008, 100, 036601. [Google Scholar] [CrossRef]
- Jinhui, Y.; Donge, W.; Hongxian, H.; Can, L. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar]
- Kudo, A. Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Justin, Y.W.; Anna, L.S.; Kazuhiko, M.; Mallouk, T.E. Visible light water splitting using dye-sensitized oxide semiconductors. Cheminform 2010, 41, 1966–1973. [Google Scholar]
- Wold, A. Photocatalytic properties of titanium dioxide (TiO2). Chem. Mater. 1993, 5, 280–283. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 38, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Muscat, J.; Swamy, V.; Harrison, N.M. First-Principles Calculations of the Phase Stability of TiO2. Phys. Rev. B 2002, 65, 392–397. [Google Scholar] [CrossRef]
- Setvín, M.; Daniel, B.; Mansfeldova, V.; Kavan, L.; Scheiber, P.; Fidler, M.; Schmid, M.; Diebold, U. Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them. Surf. Sci. 2014, 626, 61–67. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Lee, P.R.; Stephen, W.; Derk, J.; Hengzhong, Z.; Rimer, J.D.; Alexandra, N.; Banfield, J.F. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170. [Google Scholar] [CrossRef]
- Marta, M.; Elena, S. Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys. Chem. Chem. Phys. PCCP 2005, 7, 1100–1102. [Google Scholar]
- Roy, N.; Park, Y.; Sohn, Y.; Leung, K.T.; Pradhan, D. Green synthesis of anatase TiO2 nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. ACS Appl. Mater. Interfaces 2014, 6, 16498–16507. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, S.; Zhang, B.; Su, D.; He, S.; Zhao, Y.; Liu, J.; Wang, F.; Wei, M.; Evans, D. Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability. J. Mater. Chem. A 2013, 1, 2461–2467. [Google Scholar] [CrossRef]
- Ma, J.G.; Zhang, C.R.; Gong, J.J.; Wu, Y.Z.; Kou, S.Z.; Yang, H.; Chen, Y.H.; Liu, Z.J.; Chen, H.S. The electronic structures and optical properties of alkaline-earth metals doped anatase TiO2: A comparative study of screened hybrid functional and generalized gradient approximation. Materials 2015, 8, 5508–5525. [Google Scholar] [CrossRef] [PubMed]
- Coleman, H.M.; Chiang, K.; Amal, R. Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chem. Eng. J. 2005, 113, 65–72. [Google Scholar] [CrossRef]
- Kozlova, E.A.; Vorontsov, A.V. Influence of mesoporous and platinum-modified titanium dioxide preparation methods on photocatalytic activity in liquid and gas phase. Appl. Catal. B Environ. 2007, 77, 35–45. [Google Scholar] [CrossRef]
- Mete, E.; Uner, D.; Gulseren, O.; Ellialtioglu, S. Pt-incorporated anatase TiO2(001) surface for solar cell applications: First-principles density functional theory calculations. Phys. Rev. B 2009, 79, 125418. [Google Scholar] [CrossRef]
- Perdew, J.P. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Buchanan, R.C.; Park, T. Materials Crystal Chemistry; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Yang, C.; Zhao, Z.Y. Energy band alignment and interfacial properties of rutile NMO2/TiO2(NM=Ru, Rh, Os, and Ir) by first-principle calculations. Phys. Chem. Chem. Phys. 2017, 19, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Hwang, G.S. Origin of nonlocal interactions in adsorption of polar molecules on Si(001)-2x1. J. Chem. Phys. 2005, 122, 164706. [Google Scholar] [CrossRef]
- Vittadini, A.; Selloni, A. Small gold clusters on stoichiometric and defected TiO2 anatase (101) and their interaction with CO: A density functional study. J. Chem. Phys. 2002, 117, 749–773. [Google Scholar] [CrossRef]
Lattice Constants (A) | ||
---|---|---|
Category | a/b | c |
This work | 3.796 | 9.712 |
Experimental | 3.782 | 9.502 |
Difference | 0.368% | 2.162% |
Configurations | Average O-Ti Bond Length (Å) | Δ(Å) | Eads(eV) | Electrostatic Potential (eV) | Mulliken Charge (e) | |
---|---|---|---|---|---|---|
Free (101) Anatase | 1.8355 | 0 | - | 7.033 | 2.48 | |
Monoat. | Ru | 1.8595 | 0.046 | −0.81 | 4.23 | 2.23 |
Rh | 1.8865 | 0.100 | −0.24 | 0.94 | 2.4 | |
Mo | 1.9175 | 0.142 | −0.11 | 1.03 | 2.45 | |
Pd | 1.8545 | 0.063 | −0.63 | 3.94 | 2.30 | |
Diatom. | Ru | 1.8815 | 0.015 | −1.04 | 4.14 | 2.12 |
Rh | 1.9357 | 0.051 | −0.52 | 0.88 | 2.3 | |
Mo | 1.978 | 0.082 | −0.47 | 0.66 | 2.43 | |
Pd | 1.8985 | 0.019 | −0.76 | 3.81 | 2.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, P.; Yang, L.; Xiao, S.; Wang, L.; Guo, W.; Lu, J. Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation. Materials 2019, 12, 814. https://doi.org/10.3390/ma12050814
Gao P, Yang L, Xiao S, Wang L, Guo W, Lu J. Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation. Materials. 2019; 12(5):814. https://doi.org/10.3390/ma12050814
Chicago/Turabian StyleGao, Peng, Libin Yang, Songtao Xiao, Lingyu Wang, Wei Guo, and Jinghao Lu. 2019. "Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation" Materials 12, no. 5: 814. https://doi.org/10.3390/ma12050814
APA StyleGao, P., Yang, L., Xiao, S., Wang, L., Guo, W., & Lu, J. (2019). Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation. Materials, 12(5), 814. https://doi.org/10.3390/ma12050814