Effect of Lignin Modification on Properties of Kenaf Core Fiber Reinforced Poly(Butylene Succinate) Biocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Methods
2.2.1. Chemical Modification of Kraft Lignin
2.2.2. Composite Fabrication and Formulation
2.2.3. Characterization
Mechanical Testing
Fourier Transforms Infrared Spectroscopy (FTIR)
Differential Scanning Calorimeter (DSC)
Thermogravimetric Analysis (TGA)
Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Effects of Esterification on Weight Percent Gain (WPG)
3.2. Mechanical Properties of Lignin-Based Composites
3.3. FTIR Analysis
3.4. Thermal Analysis
3.4.1. Differential Scanning Calorimetry (DSC)
3.4.2. Thermo Gravimetric Analysis (TGA)
3.5. Surface Morphology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, M.P.; Wang, H.; Lee, J.H.; Ho, C.K.; Lau, K.T.; Leng, J.; Hui, D. Critical factors on manufacturing processes of natural fibre composites. Compo. Part B Eng. 2012, 4, 3549–3562. [Google Scholar] [CrossRef]
- Jayaramudu, T.; Ko, H.; Kim, H.C.; Kim, J.W.; Choi, E.S.; Kim, J. Adhesion properties of poly (ethylene oxide)-lignin blend for nanocellulose composites. Compo. Part B Eng. 2019, 156, 43–50. [Google Scholar] [CrossRef]
- Yeo, J.S.; Lee, J.H.; Hwang, S.H. Effects of lignin on the volume shrinkage and mechanical properties of a styrene/unsaturated polyester/lignin ternary composite system. Compo. Part B Eng. 2017, 130, 167–173. [Google Scholar] [CrossRef]
- Spiridon, I.; Leluk, K.; Resmerita, A.M.; Darie, R.N. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compo. Part B Eng. 2015, 69, 342–349. [Google Scholar] [CrossRef]
- Frollini, E.; Bartolucci, N.; Sisti, L.; Celli, A. Biocomposites based on poly(butylene succinate) and curaua: Mechanical and morphological properties. Polym. Test. 2015, 45, 168–173. [Google Scholar] [CrossRef]
- Negrin, M.; Macerata, E.; Consolati, G.; Quasso, F.; Genovese, L.; Soccio, M.; Giola, M.; Lotti, N.; Munari, A.; Mariani, W. Gamma radiation effects on random copolymers based on poly (butylene succinate) for packaging applications. Radiat. Phys. Chem. 2018, 142, 34–43. [Google Scholar] [CrossRef]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Jawaid, M.; Lee, C.H. Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers 2018, 10, 1187. [Google Scholar] [CrossRef] [Green Version]
- Georgousopoulou, I.N.; Vouyiouka, S.; Dole, P.; Papaspyrides, C.D. Thermo-mechanical degradation and stabilization of poly(butylene succinate). Polym. Degrad. Stab. 2016, 128, 182–192. [Google Scholar] [CrossRef]
- Lee, C.H.; Salit, M.S.; Hassan, M.R. A Review of the Flammability factors of kenaf and allied fibre reinforced polymer composites. Adv. Mater. Sci. Eng. 2014, 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Rozli, Z.; Mariyam, J.G.; Che Husna, A. Kenaf fiber composite in automotive industry. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 315–321. [Google Scholar] [CrossRef]
- Shahar, F.S.; Hameed Sultan, M.T.; Lee, S.H.; Jawaid, M.; Md Shah, A.U.; Safri, S.N.A.; Sivasankaran, P.N. A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. J. Mech. Behav. Biomed. Mater. 2019, 99, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Ishak, M.R.; Leman, Z.; Sapuan, S.M.; Edeerozey, A.M.M.; Othman, I.S. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. IOP Conf. Ser. Mater. Sci. Eng. 2010, 11, 012006. [Google Scholar] [CrossRef]
- Ismail, H.; Hamid Abdullah, A.; Abu Bakar, A. Kenaf Core reinforced high-density polyethylene/soya powder composites: The effects of filler loading and compatibilizer. J. Reinf. Plast. Compo. 2010, 29, 2489–2497. [Google Scholar] [CrossRef]
- Ismail, H.; Abdullah, A.H.; Bakar, A.A. Influence of acetylation on the tensile properties, water absorption, and thermal stability of (High-density polyethylene)/(soya powder)/(kenaf core) composites. J. Vinyl Addit. Technol. 2011, 17, 132–137. [Google Scholar] [CrossRef]
- Joonobi, M.; Harun, J.; Md Tahir, P.; Zaini, L.H.; SaifulAzry, S.; Davoodi Makinejad, M. Characteristic of Nanofibers Extracted From Kenaf Core. BioResources 2010, 5, 2556–2566. [Google Scholar]
- Ang, A.F.; Zaidon, A.; Lee, S.H.; Paridah, M.T.; Rasmina, H. Lignin-based copolymer adhesives for composite wood panels—A review. Int. J. Adhes. Adhes. 2019, 95, 102408. [Google Scholar] [CrossRef]
- Bertini, F.; Canetti, M.; Cacciamani, A.; Elegir, G.; Orlandi, M.; Zoia, L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym. Degrad. Stab. 2012, 97, 1979–1987. [Google Scholar] [CrossRef]
- Pinkert, A.; Goeke, D.F.; Marsh, K.N.; Pang, S. Extracting wood lignin without dissolving or degrading cellulose: Investigations on the use of food additive-derived ionic liquids. Green Chem. 2011, 13, 3124–3136. [Google Scholar] [CrossRef]
- Uraki, Y.; Sugiyama, Y.; Koda, K.; Kubo, S.; Kishimoto, T.; Kadla, J.F. Thermal mobility of beta-O-4-type artificial lignin. Biomacromolecules 2012, 13, 867–872. [Google Scholar] [CrossRef]
- Chen, Y.; Stark, N.M.; Cai, Z.; Frihart, C.R.; Lorenz, L.F.; Ibach, R.E. Chemical modification of kraft lignin: Effect on chemical and thermal properties. BioResources 2014, 9, 5488–5500. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Misra, M.; Mohanty, A. Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compo. Part A Appl. Sci. Manuf. 2011, 42, 1710–1718. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, W.; Wu, Q.; Ren, J. Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J. Nanomater. 2010, 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Justo, L.; Christian, N.; Patricio, P.G. Structure and thermal properties of maleated lignin-recycled polystyrene composites. J. Chil. Chem. Soc. 2013, 58, 1937–1940. [Google Scholar]
- Goliszek, M.; Podkościelna, B.; Sevastyanova, O.; Gawdzik, B.; Chabros, A. The Influence of lignin diversity on the structural and thermal properties of polymeric microspheres derived from lignin, styrene, and/or divinylbenzene. Materials 2019, 12, 2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, W.; Zhang, X.; Wei, Y.; Zhang, A.; Liu, S.; Wang, X.; Liu, C. Structural changes of bagasse during the homogeneous esterification with maleic anhydride in ionic liquid 1-allyl-3-methylimidazolium chloride. Polymers 2018, 10, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, R.; Bag, B.G.; Maity, N. Acacia nilotica (Babool) leaf extract mediated size-controlled rapid synthesis of gold nanoparticles and study of its catalytic activity. Int. Nano Lett. 2013, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Sapuan, S.M.; Hassan, M.R. Thermal analysis of kenaf fiber reinforced floreon biocomposites with magnesium hydroxide flame retardant filler. Polym. Compo. 2018, 39, 869–875. [Google Scholar] [CrossRef]
- Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- Ayoub, A.; Venditti, R. The effect of irradiation on the processability of lignin for carbon fiber applications. In Proceedings of the 2013 AIChE Annual Meeting, Hilton San Francisco Union Square, San Francisco, CA, USA, 3–8 November 2013. [Google Scholar]
- Justo, L.; Patricio, P.; Silvio, U. Structure and thermal properties of lignins: Characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 2009, 54, 460–463. [Google Scholar]
- Norshahida, S.; Hanafi, I.; Zuraida, A. The effect of kenaf core fibre loading on properties of low density polyethylene/thermoplastic sago starch/kenaf core fiber composite. J. Phys. Sci. 2013, 24, 97–115. [Google Scholar]
- Pérez-Guerrero, P.; Lisperguer, J.; Navarrete, J.; Rodrigue, D. Effect of modified Eucalyptus nitens lignin on the morphology and thermo-mechanical properties of recycled polystyrene. BioResources 2014, 9, 6514–6526. [Google Scholar] [CrossRef] [Green Version]
Composites | Code | PBS (wt %) | Lignin (wt %) | PMDI (wt %) | KCF (wt %) |
---|---|---|---|---|---|
PBS | PBS | 100 | 0 | 3 | 0 |
PBS/Lignin/PMDI | PBS/L/PMDI | 70 | 30 | 3 | 0 |
PBS/Modified Lignin/PMDI | PBS/ML/PMDI | 70 | 30 | 3 | 0 |
PBS/Lignin/PMDI/KCF | PBS/L/PMDI/KCF | 60 | 30 | 3 | 10 |
PBS/Modified Lignin/PMDI/KCF | PBS/ML/PMDI/KCF | 60 | 30 | 3 | 10 |
Samples | DSC | TGA | ||||
---|---|---|---|---|---|---|
Tg, °C | Tm, °C | Tc, °C | Onset Temperature, °C | Final Degradation Temperature, °C | Residual (%) | |
PBS | - | 115.3 | - | 350.3 | 410.1 | 1.1 |
MA | 164.3 | 257.6 | 54.4 | 139.3 | 160.2 | 0.5 |
L | 148.3 | 171.9 | 117.9 | 255.2 | 300.0 | 54.9 |
ML | 146.9 | 175.1 | 175.1 | 264.9 | 310.1 | 49.3 |
PBS/L/PMDI | 110.0 | 163.3 | 202.1 | 343.2 | 397.1 | 17.3 |
PBS/ML/PMDI | 110.4 | 165.0 | 213.5 | 341.9 | 383.2 | 17.1 |
PBS/L/PMDI/KCF | 110.4 | 163.7 | 215.8 | 341.6 | 390.2 | 9.07 |
PBS/ML/PMDI/KCF | 110.8 | 154.1 | 203.1 | 335.3 | 395.0 | 20.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Saffian, H.; Hyun-Joong, K.; Md Tahir, P.; Ibrahim, N.A.; Lee, S.H.; Lee, C.H. Effect of Lignin Modification on Properties of Kenaf Core Fiber Reinforced Poly(Butylene Succinate) Biocomposites. Materials 2019, 12, 4043. https://doi.org/10.3390/ma12244043
Ahmad Saffian H, Hyun-Joong K, Md Tahir P, Ibrahim NA, Lee SH, Lee CH. Effect of Lignin Modification on Properties of Kenaf Core Fiber Reinforced Poly(Butylene Succinate) Biocomposites. Materials. 2019; 12(24):4043. https://doi.org/10.3390/ma12244043
Chicago/Turabian StyleAhmad Saffian, Harmaen, Kim Hyun-Joong, Paridah Md Tahir, Nor Azowa Ibrahim, Seng Hua Lee, and Ching Hao Lee. 2019. "Effect of Lignin Modification on Properties of Kenaf Core Fiber Reinforced Poly(Butylene Succinate) Biocomposites" Materials 12, no. 24: 4043. https://doi.org/10.3390/ma12244043
APA StyleAhmad Saffian, H., Hyun-Joong, K., Md Tahir, P., Ibrahim, N. A., Lee, S. H., & Lee, C. H. (2019). Effect of Lignin Modification on Properties of Kenaf Core Fiber Reinforced Poly(Butylene Succinate) Biocomposites. Materials, 12(24), 4043. https://doi.org/10.3390/ma12244043