Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors
Abstract
1. Introduction
2. Materials and Fabrication
2.1. Fabrication of Zinc Oxide FETs via Spray Pyrolysis
2.1.1. Patterning the ZnO Semiconducting Layer via Wet Etching
2.1.2. Deposition and Patterning of Al S/D Electrodes
2.2. Characterization
3. Results and Discussions
3.1. Characterization of Spray-Pyrolysized ZnO Thin Films
3.2. The General Electrical Characteristics of Spray-Pyrolysized ZnO FETs
3.3. The Instability Behaviours of Spray-Pyrolysized ZnO FETs
3.3.1. The Electrical Instabilities of Spray-Pyrolysized ZnO FETs under Positive Bias Stress
3.3.2. The Electrical Instabilities of Spray-Pyrolysized ZnO FETs under Negative Bias Stress
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, E.M.C.; Barquinha, P.M.C.; Pimentel, A.C.M.B.G.; Gonçalves, A.M.F.; Marques, A.J.S.; Pereira, L.M.N.; Martins, R.F.P. Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Adv. Mater. 2005, 17, 590–594. [Google Scholar] [CrossRef]
- Lin, H.-C.; Lyu, R.-J.; Huang, T.-Y. Fabrication of High-Performance ZnO Thin-Film Transistors with Submicrometer Channel Length. IEEE Electr. Device Lett. 2013, 34, 1160–1162. [Google Scholar] [CrossRef]
- Levy, D.H.; Freeman, D.; Nelson, S.F.; Cowdery-Corvan, P.J.; Irving, L.M. Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 2008, 92, 192101. [Google Scholar] [CrossRef]
- Kim, J.B.; Fuentes-Hernandez, C.; Potscavage, W.J., Jr.; Zhang, X.H.; Kippelen, B. Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition. Appl. Phys. Lett. 2009, 94, 142107. [Google Scholar] [CrossRef]
- Liu, Y.; Gorla, C.R.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H.; Wraback, M. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. Electron. Mater. 2000, 29, 69–74. [Google Scholar] [CrossRef]
- Hahn, B.; Heindel, G.; Pschorr-Schoberer, E.; Gebhardt, W. MOCVD layer growth of ZnO using DMZn and tertiary butanol. Semicond. Sci. Technol. 1998, 13, 788–791. [Google Scholar] [CrossRef]
- Ohya, Y.; Niwa, T.; Ban, T.; Takahashi, Y. Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition. Jpn. J. Appl. Phys. 2001, 40, 297–298. [Google Scholar] [CrossRef]
- Park, Y.K.; Choi, H.S.; Kim, J.-H.; Kim, J.-H.; Hahn, Y.-B. High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution. Nanotechnology 2011, 22, 185310. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, H.-S.; Shin, H.S.; Ahn, B.D.; Kim, K.H.; Kim, H.J. Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 2009, 517, 4007–4010. [Google Scholar] [CrossRef]
- Schneider, J.J.; Hoffmann, R.C.; Engstler, J.; Soffke, O.; Jaegermann, W.; Issanin, A.; Klyszcz, A. A Printed and Flexible Field-Effect Transistor Device with Nanoscale Zinc Oxide as Active Semiconductor Material. Adv. Mater. 2008, 20, 3383–3387. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Thomas, S.; Wöbkenberg, P.H.; Bradley, D.D.C.; McLachlan, M.A.; Anthopoulos, T.D. High-Mobility Low-Voltage ZnO and Li-Doped ZnO Transistors Based on ZrO2 High-k Dielectric Grown by Spray Pyrolysis in Ambient Air. Adv. Mater. 2011, 23, 1894–1898. [Google Scholar] [CrossRef]
- Afouxenidis, D.; Mazzocco, R.; Vourlias, G.; Livesley, P.J.; Krier, A.; Milne, W.I.; Kolosov, O.; Adamopoulos, G. ZnO-based Thin Film Transistors Employing Aluminum Titanate Gate Dielectrics Deposited by Spray Pyrolysis at Ambient Air. ACS Appl. Mater. Interfaces 2015, 7, 7334–7341. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Wöbkenberg, P.H.; Smith, J.; Ball, J.M.; Adamopoulos, G.; Bradley, D.D.C.; Anthopoulos, T.D. High-Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere. Adv. Mater. 2009, 21, 2226–2231. [Google Scholar] [CrossRef]
- Lee, J.-M.; Cho, I.-T.; Lee, J.-H.; Kwon, H.-I. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Appl. Phys. Lett. 2008, 93, 093504. [Google Scholar] [CrossRef]
- Ha, J.; Chung, S.; Pei, M.; Cho, K.; Yang, H.; Hong, Y. One-Step Interface Engineering for All-Inkjet-Printed, All-Organic Components in Transparent, Flexible Transistors and Inverters: Polymer Binding. ACS Appl. Mater. Interfaces 2017, 9, 8819–8829. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-Y.; Ha, J.; Cho, K.; Pak, J.; Seo, J.; Park, J.; Kim, J.-K.; Chung, S.; Hong, Y.; Lee, T. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano 2017, 11, 10273–10280. [Google Scholar] [CrossRef]
- Cross, R.B.M.; De Souza, M.M. Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 2006, 89, 263513. [Google Scholar] [CrossRef]
- Im, H.; Song, H.; Jeong, J.; Hong, Y.; Hong, Y. Effects of defect creation on bidirectional behavior with hump characteristics of InGaZnO TFTs under bias and thermal stress. Jpn. J. Appl. Phys. 2015, 54, 03CB03. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Amani, M.; Ahn, G.H.; Song, Y.; Javey, A.; Chung, S.; Lee, T. Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts. ACS Nano 2016, 10, 2819–2826. [Google Scholar] [CrossRef] [PubMed]
- Zeumault, A.; Scheideler, W.; Grau, G.; Smith, J.; Subramanian, V. Patterning of Solution-Processed, Indium-Free Oxide TFTs by Selective Spray Pyrolysis. Adv. Electron. Mater. 2016, 2, 1500326. [Google Scholar] [CrossRef]
- Faber, H.; Butz, B.; Dieker, C.; Spiecker, E.; Halik, M. Fully Patterned Low-Voltage Transparent Metal Oxide Transistors Deposited Solely by Chemical Spray Pyrolysis. Adv. Funct. Mater. 2013, 23, 2828. [Google Scholar] [CrossRef]
- Kuo, Y. Parameter Extraction. In Thin Film Transistors. 1. Amorphous Silicon Thin Film Transistors; Kluwer Academic Publishers: Boston, MA, USA, 2004; Volume 1, pp. 140–155. [Google Scholar]
- Goyal, D.; Agashe, C.; Marathe, B.; Takwale, M.; Bhide, V. Effect of precursor solution concentration on the structural properties of sprayed ZnO films. J. Mater. Sci. Lett. 1992, 11, 708–710. [Google Scholar] [CrossRef]
- Van Heerden, J.; Swanepoel, R. XRD analysis of ZnO thin films prepared by spray pyrolysis. Thin Solid Films 1997, 299, 72–77. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Bashir, A.; Gillin, W.P.; Georgakopoulos, S.; Shkunov, M.; Baklar, M.A.; Stingelin, N.; Bradley, D.D.C.; Anthopoulos, T.D. Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2011, 21, 525–531. [Google Scholar] [CrossRef]
- Rakhshani, E.; Kokaj, J.; Mathew, J.; Peradeep, B. Successive chemical solution deposition of ZnO films on flexible steel substrate: Structure, photoluminescence and optical transitions. Appl. Phys. A 2007, 86, 377–383. [Google Scholar] [CrossRef]
- Gfroerer, T.H. Photoluminescence in Analysis of Surfaces and Interfaces; John Wiley & Sons, Ltd.: Chichester, UK, 2000; pp. 7–12. [Google Scholar]
- Thomas, M.A.; Cui, J.B. Electrochemical growth and characterization of Ag-doped ZnO nanostructures. J. Vac. Sci. Technol. B 2009, 27, 1673–1677. [Google Scholar] [CrossRef]
- Das, B.; Kumar, P.; Rao, C.N.R. Factors Affecting Laser-Excited Photoluminescence from ZnO Nanostructures. J. Clust. Sci. 2012, 23, 649–659. [Google Scholar] [CrossRef]
- Wang, B.; Yu, X.; Guo, P.; Huang, W.; Zeng, L.; Zhou, N.; Chi, L.; Bedzyk, M.J.; Chang, R.P.; Marks, T.J.; et al. Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. Adv. Electron Mater. 2016, 2, 1500427. [Google Scholar] [CrossRef]
- Jeong, J.H.; Yang, H.W.; Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; Kim, H.D.; Song, J.; Hwang, C.S. Origin of Subthreshold Swing Improvement in Amorphous Indium Gallium Zinc Oxide Transistors. Electrochem. Solid-State Lett. 2008, 11, H157–H159. [Google Scholar] [CrossRef]
- Rolland, A.; Richard, J.; Kleider, J.; Mencaraglia, D. Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations. J. Electrochem. Soc. 1993, 140, 3679–3683. [Google Scholar] [CrossRef]
- Flewitt, A.J.; Dutson, J.D.; Beecher, P.; Paul, D.; Wakeham, S.J.; Vickers, M.E.; Ducati, C.; Speakman, S.P.; Milne, W.I.; Thwaites, M.J. Stability of thin film transistors incorporating a zinc oxide or indium zinc oxide channel deposited by a high rate sputtering process. Semicond. Sci. Technol. 2009, 24, 085002. [Google Scholar] [CrossRef]
- Park, J.-S.; Kim, H.; Kim, I.-D. Overview of electroceramic materials for oxide semiconductor thin film transistors. J. Electroceram. 2014, 32, 117–140. [Google Scholar] [CrossRef]
- Su, L.-Y.; Lin, H.-Y.; Lin, H.-K.; Wang, S.-L.; Peng, L.-H.; Huang, J. Characterizations of Amorphous IGZO Thin-Film Transistors with Low Subthreshold Swing. IEEE Electr. Device Lett. 2011, 32, 1245–1247. [Google Scholar] [CrossRef]
- Kuo, Y. Threshold Voltages Metastibility. In Thin Film Transistors. 1. Amorphous Silicon Thin Film Transistors; Kluwer Academic Publishers: Boston, MA, USA, 2004; Volume 1, pp. 133–140. [Google Scholar]
- Park, S.-H.K.; Hwang, C.-S.; Ryu, M.; Yang, S.; Byun, C.; Shin, J.; Lee, J.-I.; Lee, K.; Oh, M.; Im, S. Transparent and Photo-stable ZnO Thin-film Transistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel. Adv. Mater. 2009, 21, 678–682. [Google Scholar] [CrossRef]
- Torricelli, F.; Meijboom, J.R.; Smits, E.; Tripathi, A.K.; Ferroni, M.; Federici, S.; Gelinck, G.H.; Colalongo, L.; Kovacs-Vajna, Z.M.; Leeuw, D.; et al. Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors Part I: Long-Channel Devices. IEEE Trans. Electron Devices 2011, 58, 2610–2619. [Google Scholar] [CrossRef]
- Park, H.-W.; Kwon, S.; Song, A.; Choi, D.; Chung, K.-B. Dynamics of bias instability in the tungsten-indium-zinc oxide thin film transistor. J. Mater. Chem. C 2018, 7, 1006–1013. [Google Scholar] [CrossRef]
- Libsch, F.; Kanicki, J. Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl. Phys. Lett. 1998, 62, 1286–1288. [Google Scholar] [CrossRef]
- Flewitt, A.J.; Powell, M.J. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination. J. Appl. Phys. 2014, 115, 134501. [Google Scholar] [CrossRef]
- Niang, K.M.; Barquinha, P.M.C.; Martins, R.F.P.; Cobb, B.; Powell, M.J.; Flewitt, A.J. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress. Appl. Phys. Lett. 2016, 108, 093505. [Google Scholar] [CrossRef]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.P.D.; Liu, P.T.; Huang, Y.P. Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy. IEEE Trans. Electron Devices 2011, 58, 1121–1126. [Google Scholar]
- Chowdhury, M.D.H.; Migliorato, P.; Jang, J. Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium zinc oxide thin film transistors. Appl. Phys. Lett. 2013, 102, 143506. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. [Google Scholar] [CrossRef]
- Oba, F.; Togo, A.; Tanaka, I.; Paier, J.; Kresse, G. Defect energetics in ZnO: A hybrid Hartree-Fock density functional study. Phys. Rev. B 2008, 77, 245202. [Google Scholar] [CrossRef]
- Clark, S.J.; Robertson, J.; Lany, S.; Zunger, A. Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals. Phys. Rev. B 2010, 81, 115311. [Google Scholar] [CrossRef]
- Powell, M.; Van Berkel, C.; Hughes, J. Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors. Appl. Phys. Lett. 1989, 54, 1323–1325. [Google Scholar] [CrossRef]
- Conley, J.F. Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors. IEEE Trans. Device Mater. Reliab. 2010, 10, 460–475. [Google Scholar] [CrossRef]
Reference | Active Layer (Process Temperature) | Gate Dielectric | S/D Electrodes | Mobility (cm2 V−1 s−1) | On/Off | SS (V dec−1) |
---|---|---|---|---|---|---|
This work | ZnO (400 °C) | Thermally grown SiO2 | Al | ~14.7 | 109 | 0.49 |
Adamopoulos et al. [13] | Li-ZnO (400 °C) | spray-pyrolysized ZrO2 | Al | ~85 | 106 | - |
Afouxenidis et al. [14] | ZnO (400 °C) | spray-pyrolysized Al2x−1TixOy | Al | ~10 | 106 | 0.55 |
Bashier et al. [15] | ZnO (400 °C) | Thermally grown SiO2 | Al | ~15 | 106 | 2.9 |
Wang et al. [33] | IZO (350 °C) | Thermally grown SiO2 | Al | ~4.5 | 106 | - |
Spray Pressure (psi) | Surface Roughness (nm in RMS) | Field-Effect Mobility (cm2 V−1 s−1) | Vth (V) | Sunthreshold Swing (V/Decade) | IDON (A) | IDOFF (A) |
---|---|---|---|---|---|---|
15 | 5.81 | 14.7 | 3.6 | 0.78 | 3.9 × 10−7 | ~5 × 10−13 |
30 | 10.1 | 13.2 | 1.2 | 1.0 | 2.8 × 10−7 | ~7 × 10−13 |
45 | 11.3 | 9.9 | −7.3 | 2.6 | 1.9 × 10−7 | ~1 × 10−11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Hwang, S.; Ko, D.-H.; Chung, S. Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors. Materials 2019, 12, 3423. https://doi.org/10.3390/ma12203423
Cho J, Hwang S, Ko D-H, Chung S. Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors. Materials. 2019; 12(20):3423. https://doi.org/10.3390/ma12203423
Chicago/Turabian StyleCho, Junhee, Seongkwon Hwang, Doo-Hyun Ko, and Seungjun Chung. 2019. "Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors" Materials 12, no. 20: 3423. https://doi.org/10.3390/ma12203423
APA StyleCho, J., Hwang, S., Ko, D.-H., & Chung, S. (2019). Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors. Materials, 12(20), 3423. https://doi.org/10.3390/ma12203423