Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics
Abstract
1. Introduction
2. Computational Methodology
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, M.C.; Ungaro, C.; Foley, J.J.; Gray, S.K. Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion. Sol. Energy 2018, 165, 100–114. [Google Scholar] [CrossRef]
- Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2015, 2, 27–35. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef]
- Ferrari, C.; Melino, F.; Pinelli, M.; Spina, P.; Venturini, M. Overview and status of thermophotovoltaic systems. Energy Procedia 2014, 45, 160–169. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chattopadhyay, S.; Jen, Y.J.; Peng, C.Y.; Liu, T.A.; Hsu, Y.K.; Pan, C.L.; Lo, H.C.; Hsu, C.H.; Chang, Y.H.; et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770. [Google Scholar] [CrossRef]
- Fleming, J.; Lin, S.; El-Kady, I.; Biswas, R.; Ho, K. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef]
- Zhou, Z.; Sakr, E.; Sun, Y.; Bermel, P. Solar thermophotovoltaics: Reshaping the solar spectrum. Nanophotonics 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Khodasevych, I.E.; Wang, L.; Mitchell, A.; Rosengarten, G. Micro-and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881. [Google Scholar] [CrossRef]
- Oh, J.; Yuan, H.C.; Branz, H.M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743. [Google Scholar] [CrossRef]
- Ungaro, C.; Gray, S.K.; Gupta, M.C. Black tungsten for solar power generation. Appl. Phys. Lett. 2013, 103, 071105. [Google Scholar] [CrossRef]
- Zhang, S.; To, S.; Wang, S.; Zhu, Z. A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 2015, 91, 76–95. [Google Scholar] [CrossRef]
- Bagley, J.Q.; Tsang, L.; Ding, K.H.; Ishimaru, A. Optical transmission through a plasmon film lens with small roughness: Enhanced spatial resolution of images of single source and multiple sources. JOSA B 2011, 28, 1766–1777. [Google Scholar] [CrossRef]
- Wang, H.; Bagley, J.Q.; Tsang, L.; Huang, S.; Ding, K.H.; Ishimaru, A. Image enhancement for flat and rough film plasmon superlenses by adding loss. JOSA B 2011, 28, 2499–2509. [Google Scholar] [CrossRef]
- Huang, S.; Wang, H.; Ding, K.H.; Tsang, L. Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. Opt. Lett. 2012, 37, 1295–1297. [Google Scholar] [CrossRef]
- Lim, J.; Hippalgaonkar, K.; Andrews, S.C.; Majumdar, A.; Yang, P. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 2012, 12, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Kumar, V.; Tiwari, S.; Mishra, T.; Angula, G.; Adhikari, S. Development and degradation behavior of protective multilayer coatings for aluminum reflectors for solar thermal applications. Thin Solid Films 2016, 619, 202–207. [Google Scholar] [CrossRef]
- Fryauf, D.M.; Phillips, A.C.; Kobayashi, N.P. Corrosion protection of silver-based telescope mirrors using evaporated anti-oxidation overlayers and aluminum oxide films by atomic layer deposition. Proc. SPIE 2016, 9924, 99240S. [Google Scholar]
- Fryauf, D.M.; Phillips, A.C.; Kobayashi, N.P. Corrosion barriers for silver-based telescope mirrors: Comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide. J. Astron. Telescopes Instrum. Syst. 2015, 1, 044002. [Google Scholar] [CrossRef]
- Rephaeli, E.; Fan, S. Tungsten black absorber for solar light with wide angular operation range. Appl. Phys. Lett. 2008, 92, 211107. [Google Scholar] [CrossRef]
- Chen, Y.B.; Zhang, Z. Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 2007, 269, 411–417. [Google Scholar] [CrossRef]
- Keçebaş, M.A.; Şendur, K. Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. JOSA B 2018, 35, 1845–1853. [Google Scholar] [CrossRef]
- Voronovich, A.G. Wave Scattering from Rough Surfaces; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Beckmann, P.; Spizzichino, A. The Scattering Of Electromagnetic Waves From Rough Surfaces; Artech House: Norwood, MA, USA, 1987. [Google Scholar]
- Ogilvy, J.A. Theory of Wave Scattering From Random Rough Surfaces; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Torrance, K.E.; Sparrow, E.M. Theory for Off-Specular Reflection From Roughened Surfaces. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Videen, G.; Hsu, J.; Bickel, W.; Wolfe, W. Polarized light scattering from rough surfaces. J. Opt. Soc. Am. 1992, 9, 1111–1118. [Google Scholar] [CrossRef]
- Sinha, S.K.; Sirota, E.B.; Garoff, S.; Stanley, H.B. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 1988, 38, 2297–2311. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R.; Li, F.; Nghiem, S.; Wilson, W.; Kong, J.A. Polarimetric passive remote sensing of ocean wind vectors. Radio Sci. 1994, 29, 799–814. [Google Scholar] [CrossRef]
- Yueh, H.A.; Shin, R.T.; Kong, J.A. Scattering of electromagnetic waves from a periodic surface with random roughness. J. Appl. Phys. 1988, 64, 1657–1670. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff’s law. Radio Sci. 1993, 28, 471–480. [Google Scholar] [CrossRef]
- Church, E.; Jenkinson, H.; Zavada, J. Relationship between surface scattering and microtopographic features. Opt. Eng. 1979, 18, 182125. [Google Scholar] [CrossRef]
- Hottel, H.C.; Sarofim, A.F. Radiative Transfer; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley-Interscience: New York, NY, USA, 1985. [Google Scholar]
- Johnson, J.T.; Zhang, M. Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2305–2316. [Google Scholar] [CrossRef]
- Chou, H.T.; Johnson, J.T. A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method. Radio Sci. 1998, 33, 1277–1287. [Google Scholar] [CrossRef]
- Johnson, J.T. A numerical study of scattering from an object above a rough surface. IEEE Trans. Antennas Propagation 2002, 50, 1361–1367. [Google Scholar] [CrossRef]
- Pino, M.R.; Landesa, L.; Rodriguez, J.L.; Obelleiro, F.; Burkholder, R.J. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans. Antennas Propagation 1999, 47, 961–969. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef]
- Sendur, I.K.; Baertlein, B.A. Numerical simulation of thermal signatures of buried mines over a diurnal cycle. Proc. SPIE 2000, 4038, 156–167. [Google Scholar]
- Sendur, I.K.; Johnson, J.T.; Baertlein, B.A. Analysis of polarimetric IR phenomena for detection of surface mines. Proc. SPIE 2001, 4394, 153–163. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res.: Oceans 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, Y.; Chu, S.; Wang, S.; Qu, B.; Xiao, L.; Chen, Z.; Gong, Q.; Wu, Z.; Hou, X. Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale 2014, 6, 8171–8176. [Google Scholar] [CrossRef]
- Faÿ, S.; Feitknecht, L.; Schlüchter, R.; Kroll, U.; Vallat-Sauvain, E.; Shah, A. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Sol. Energy Mater. Solar Cells 2006, 90, 2960–2967. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Hoffmann, A.; Lenkefi, Z.; Szentirmay, Z. Effect of roughness on surface plasmon scattering in gold films. J. Phys.: Condensed Matter 1998, 10, 5503–5513. [Google Scholar] [CrossRef]
- Kanso, M.; Cuenot, S.; Louarn, G. Roughness effect on the SPR measurements for an optical fibre configuration: Experimental and numerical approaches. J. Opt. A: Pure Appl. Opt. 2007, 9, 586–592. [Google Scholar] [CrossRef]
- Farias, G.A.; Maradudin, A.A. Surface plasmons on a randomly rough surface. Phys. Rev. B 1983, 28, 5675–5687. [Google Scholar] [CrossRef]
- Maradudin, A.A.; Mills, D.L. Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Phys. Rev. B 1975, 11, 1392–1415. [Google Scholar] [CrossRef]
- Celli, V.; Maradudin, A.A.; Marvin, A.M.; McGurn, A.R. Some aspects of light scattering from a randomly rough metal surface. J. Opt. Soc. Am. A 1985, 2, 2225–2239. [Google Scholar] [CrossRef]
- Simonsen, I.; Maradudin, A.A. Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates. Opt. Commun. 1999, 162, 99–111. [Google Scholar] [CrossRef][Green Version]
- Jacobs, T.D.; Junge, T.; Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrol. Proper. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Tsang, L.; Ding, K.H.; Li, X.; Duvelle, P.N.; Vella, J.H.; Goldsmith, J.; Devlin, C.L.; Limberopoulos, N.I. Studies of the influence of deep subwavelength surface roughness on fields of plasmonic thin film based on Lippmann–Schwinger equation in the spectral domain. JOSA B 2015, 32, 878–891. [Google Scholar] [CrossRef]
- Sadiku, M.N. Numerical Techniques in Electromagnetics; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Canteli, D.; López, J.; Lauzurica, S.; Lluscà, M.; Sánchez-Aniorte, M.; Bertomeu, J.; Morales, M.; Molpeceres, C. Analysis by Finite Element Calculations of Light Scattering in Laser-textured AZO Films for PV thin-film Solar Cells. Energy Procedia 2015, 84, 78–85. [Google Scholar] [CrossRef][Green Version]
- Delacrétaz, Y.; Seydoux, O.; Chamot, S.; Ettemeyer, A.; Depeursinge, C. Monte Carlo simulation of the field back-scattered from rough surfaces. J. Opt. Soc. Am. A 2012, 29, 270–277. [Google Scholar] [CrossRef]
- Wang, T.; Tsang, L.; Johnson, J.T.; Tan, S. Scattering and transmission of waves in multiple random rough surfaces: Energy conservation studies with the second order small perturbation method. Progress Electromagn. Res. 2016, 157, 1–20. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T.L.; Maier, S.A.; Glembocki, O.J. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 2015, 4, 44–68. [Google Scholar] [CrossRef]
- Bennett, H.; Porteus, J. Relation between surface roughness and specular reflectance at normal incidence. JOSA 1961, 51, 123–129. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Sendur, K. Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials 2019, 12, 3090. https://doi.org/10.3390/ma12193090
Cao L, Sendur K. Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials. 2019; 12(19):3090. https://doi.org/10.3390/ma12193090
Chicago/Turabian StyleCao, Lina, and Kursat Sendur. 2019. "Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics" Materials 12, no. 19: 3090. https://doi.org/10.3390/ma12193090
APA StyleCao, L., & Sendur, K. (2019). Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials, 12(19), 3090. https://doi.org/10.3390/ma12193090