The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
3. Results and Discussion
- Biogas mainly composed of methane, carbon dioxide, hydrogen sulfide and water vapor used directly for the purpose of heating or energy co-generation;
- Post fermentation biomass which after dewatering forms sewage sludge categorized as waste;
- Filtrate rerouted to the preliminary node of waste water purification.
3.1. Environmental Benefits
3.2. Profitability Analysis
The Calculation of Operational Costs
4. Conclusions
- The method may be applied in any waste water treatment facility with a modest capital expenditure. Energy biomass constitutes the final product to be used in the energy sector obliged to co-firing of biomass with fossil fuels in accordance with the EU policy.
- The volume of bio-sewage sludge currently generated in Poland converted to dry mass accounts for over 700,000 Mg. Using the proposed method, it is possible to produce, on the national level, biomass in the amount of 970,000 Mg of dry mass qualified as energy biomass replacing fossil fuels and directly dedicated for professional electricity and heat generation.
- At the same time, the processed sewage sludge is not landfilled. The fact that renewable resources of sewage sludge biomass are utilized for energy purposes instead of exploiting crop and forest cultivations may be considered as yet another advantage. The product is not a competitor in relation to agricultural food production.
- The research demonstrated that in the waste water treatment sector there exists energy potential in terms of calorific value which translates into tangible benefits both in the context of environmental protection and professional energy generation.
- The conducted economic analysis confirmed that the sewage sludge bioconversion product may constitute an alternative biofuel to achieve the optimal composition of the required energy mix, and most importantly, a product which does not increase the unit cost of producing 1 MWh of electrical energy.
Author Contributions
Funding
Conflicts of Interest
References
- Paliwa Formowane Biopaliwa i Paliwa z Odpadów w Procesach Termicznych. Available online: http://www.os.not.pl/docs/czasopismo/2006/Recenzje_4-2006b.pdf (accessed on 27 June 2019).
- Smoliński, A.; Howaniec, N.; Bąk, A. Utilization of energy crops and sewage sludge in the process of co-gasification for sustainable hydrogen production. Energies 2018, 11, 809. [Google Scholar] [CrossRef]
- Urych, B.; Smoliński, A. Kinetics of sewage sludge pyrolysis and air gasification of its chars. Energy Fuels 2016, 30, 4869–4878. [Google Scholar] [CrossRef]
- Garrido-Baserba, M.; Molinos-Senante, M.; Abelleira-Pereira, J.M.; Fdez-Güelfo, L.A.; Poch, M.; Hernandez-Sancho, F. Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Clean. Prod. 2015, 107, 410–419. [Google Scholar] [CrossRef]
- Camargo, F.P.; Tonello, P.S.; dos Santos, A.C.A.; Silveira Duarte, I.C. Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments-a review. Water Air Soil Pollut. 2016, 227, 433. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Środowiska. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20140001923/O/D20141923.pdf (accessed on 27 June 2019).
- Smoliński, A.; Howaniec, A. Co-gasification of coal/sewage sludge blends to hydrogen-rich gas with the application of simulated high temperature reactor excess heat. Int. J. Hydrogen Energy 2016, 41, 8154–8158. [Google Scholar] [CrossRef]
- Speidel, M.; Kraaij, G.; Wörner, A. A new process concept for highly efficient conversion of sewage sludge by combined fermentation and gasification and power generation in a hybrid system consisting of a SOFC and a gas turbine. Energy Convers. Manag. 2015, 98, 259–267. [Google Scholar] [CrossRef]
- Lin, Y.; Liao, Y.; Yu, Z.; Fang, S.; Ma, X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis. Thermochim. Acta 2017, 653, 71–78. [Google Scholar] [CrossRef]
- Ramos, A.; Monteiro, E.; Silva, V.; Rouboa, A. Co-gasification and recent developments on waste-to-energy conversion: A Review. Renew. Sustain. Energy Rev. 2018, 81, 380–398. [Google Scholar] [CrossRef]
- Niu, S.; Chen, M.; Li, Y.; Song, J. Co-combustion characteristics of municipal sewage sludge and bituminous coal. J. Therm. Anal. Calorim. 2018, 131, 1821–1834. [Google Scholar] [CrossRef]
- Smoliński, A.; Howaniec, N. Thermal Utilization of Sewage Sludge in the Process of Steam Co-Gasification with Coal to Hydrogen-Rich Gas. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, SGEM2017 Vienna GREEN Conference Proceedings, Vienna, Austria, 27–29 November 2017; Volume 17, pp. 829–836. [Google Scholar]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009, on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF (accessed on 27 June 2019).
- Czop, M.; Jarząbkowska, N. Badanie właściwości paliwowych komunalnego o sadu ściekowego. Arch. J. Waste Manag. Environ. Prot. 2016, 18, 51–62. [Google Scholar]
- Skoglund, N.; Bäfver, L.; Fahlströmd, J.; Holmén, E.; Renström, C. Fuel design in co-combustion of demolition wood chips and municipal sewage sludge. Fuel Process. Technol. 2016, 141, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Yuan, X.; Jiang, L.; Chen, X.; Li, H.; Zeng, G.; Leng, L.; Wang, H.; Huang, H. Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust. Energy 2015, 91, 441–450. [Google Scholar] [CrossRef]
- Pinto, F.; Andre, R.N.; Lopes, H.; Dias, M.; Gulyurtlu, I.; Cabrita, I. Effect of experimental conditions on gas quality and solids produced by sewage sludge cogasification. Sewage sludge mixed with biomass. Energy Fuel 2008, 22, 2314–2325. [Google Scholar] [CrossRef]
- Chao, G.; Guo, Y.; Liu, T.; Peng, N.; Liu, Z. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. Int. J. Hydrogen Energy 2016, 41, 3363–3372. [Google Scholar]
- Ma, W.; Du, G.; Li, J.; Fang, Y.; Hou, L.; Chen, G.; Ma, D. Supercritical water pyrolysis of sewage sludge. Waste Manag. 2017, 59, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Kamińska Pietrzak, N.; Smoliński, A. Selected environmental aspects of gasification and co-gasification of various types of waste. J. Sustain. Min. 2013, 12, 6–13. [Google Scholar] [CrossRef]
- Methling, T.; Armbrust, N.; Haitz, T.; Speidel, M.; Poboss, N.; Braun-Unkhoff, M.; Dieter, H.; Kempter-Regel, B.; Kraaij, G.; Schliessmann, U.; et al. Power generation based on biomass by combined fermentation and gasification-A new concept derived from experiments and modelling. Bioresour. Technol. 2014, 169, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Pająk, T. Zagospodarowanie osadów ściekowych metodami termicznymi. Eng. Prot. Environ. 2012, 4, 439–449. [Google Scholar]
- Wielowariantowa Analiza Możliwości Współspalania Osadów ściekowych w Kotłach Energetycznych Opalanych Węglem. Available online: http://ago.helion.pl/full/pdf/vol13-1-2.pdf (accessed on 27 June 2019).
No | Parameter | Unit | Mean Value |
---|---|---|---|
1 | pH | - | 10.85 |
2 | Dry mass | % | 23.13 |
3 | Organic matter content | % dry mass | 45.50 |
4 | P content | % dry mass | 1.78 |
5 | Ca content | % dry mass | 14.81 |
6 | Mg content | % dry mass | 0.55 |
7 | ammonium nitrogen content | % dry mass | 0.33 |
8 | Total N content | % dry mass | 5.05 |
9 | Cd | mg/kg d.m. | 1.06 |
10 | Cu | mg/kg d.m. | 179.17 |
11 | Ni | mg/kg d.m. | 10.93 |
12 | Pb | mg/kg d.m. | 18.83 |
13 | Zn | mg/kg d.m. | 504.83 |
14 | Hg | mg/kg d.m. | 0.49 |
15 | Cr | mg/kg d.m. | 25.70 |
Ingredient | Share |
---|---|
Post-fermentation biomass—stabilized municipal sewage sludge 19 08 05 | 70% |
Additive 1: Flotoconcentrate—flotation concentrate of hard coal | 10–20% |
Additive 2: Cellulose lignin | 0–10% |
Additive 3: Wood sawdust | 0–5% |
Additive 4: Glycerol bio-phase from the rapeseed oil transesterification process | 4–5% |
Additive 5: A mixture of bioalcohols as a co-product of alcoholic fermentation | 1% |
Fuel | Emission Concentrations | |||||
---|---|---|---|---|---|---|
O2 % | CO2 % | CO ppm | NO ppm | NOx ppm | SO2 ppm | |
Coal | 13.12 | 6.56 | 1558 | 163 | 162 | 249 |
Coal + 20% of bioconversion product | 14.44 | 5.43 | 1903 | 300 | 303 | 179 |
Specification | Value |
---|---|
Depreciation | 10.38 |
Materials | 11.06 |
Energy | 10.85 |
Salaries | 9.41 |
Real property tax | 0.59 |
Equipment costs (repository sites) | 3.84 |
Maintenance | 1.06 |
Direct cost of 1 Mg of product | 47.18 |
Overhead costs mark-up | 4.24 |
Overall costs mark-up | 5.65 |
Margin | 5.65 |
TOTAL | 62.71 |
Specification | Value (EUR) | EUR/1 Mg of the Final Product |
---|---|---|
1. Transportation savings 5475 Mg (sewage sludge feedstock) 23.53 EUR/Mg | 128,832 | 57.37 |
2. Income from the sale of bioconversion product 2245 Mg (production) | 140,784 | 62.71 |
3. Production operational costs | 128,126 | 57.06 |
TOTAL (1 + 2 − 3) | 141,490 | 63.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smoliński, A.; Karwot, J.; Bondaruk, J.; Bąk, A. The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits. Materials 2019, 12, 2417. https://doi.org/10.3390/ma12152417
Smoliński A, Karwot J, Bondaruk J, Bąk A. The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits. Materials. 2019; 12(15):2417. https://doi.org/10.3390/ma12152417
Chicago/Turabian StyleSmoliński, Adam, Janusz Karwot, Jan Bondaruk, and Andrzej Bąk. 2019. "The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits" Materials 12, no. 15: 2417. https://doi.org/10.3390/ma12152417
APA StyleSmoliński, A., Karwot, J., Bondaruk, J., & Bąk, A. (2019). The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits. Materials, 12(15), 2417. https://doi.org/10.3390/ma12152417