Simultaneous Evaluation of Creep Deformation and Recovery of Bulk-Fill Dental Composites Immersed in Food-Simulating Liquids
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Creep Strain
3.2. Recovery Strain
3.3. Permanent Set
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benetti, A.R.; Havndrup-Pedersen, C.; Honoré, D.; Pedersen, M.K.; Pallesen, U. Bulk-Fill Resin Composites: Polymerization Contraction, Depth of Cure, and Gap Formation. Oper. Dent. 2014, 40, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Alrahlah, A.; Silikas, N.; Watts, D.C. Post-cure depth of cure of bulk fill dental resin-composites. Dent. Mater. 2014, 30, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Corral-Núnez, C.; Vildósola-Grez, P.; Bersezio-Miranda, C.; Alves-Dos Campos, E.; Fernández Godoy, E. state of the art of bulk-fill resin-based composites: A review. Rev. Fac. Odontol. Univ. Antioq. 2015, 27, 177–196. [Google Scholar] [CrossRef]
- Papadogiannis, D.; Tolidis, K.; Gerasimou, P.; Lakes, R.; Papadogiannis, Y. Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins. Dent. Mater. 2015, 31, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J. Dent. 2015, 43, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.T.; Chung, D.H.; Shin, D.; García-Godoy, F. Effect of eccentric load cycling on microleakage of Class V flowable and packable composite resin restorations. Oper. Dent. 2001, 26, 603–608. [Google Scholar] [PubMed]
- Yap, A.U.; Tan, S.H.; Wee, S.S.; Lee, C.W.; Lim, E.L.; Zeng, K.Y. Chemical degradation of composite restoratives. J. Oral Rehabil. 2001, 28, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, M.; Khan, A.; Rehman, I.; Wong, F. Effect of Beverages on Viscoelastic Properties of Resin-Based Dental Composites. Materials 2015, 8, 2863–2872. [Google Scholar] [CrossRef] [Green Version]
- Wongkhantee, S.; Patanapiradej, V.; Maneenut, C.; Tantbirojn, D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 2006, 34, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, H.Y.; Watts, D.C. Viscoelastic stability of resin-composites aged in food-simulating solvents. Dent. Mater. 2013, 29, 963–970. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Silikas, N.; Akhtar, R.; Watts, D.C. Nanoindentation creep versus bulk compressive creep of dental resin-composites. Dent. Mater. 2012, 28, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahdal, K.; Ilie, N.; Silikas, N.; Watts, D.C. Polymerization kinetics and impact of post polymerization on the degree of conversion of bulk-fill resin-composite at clinically relevant depth. Dent. Mater. 2015, 31, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Bucuta, S.; Draenert, M. Bulk-fill Resin-based Composites: An in Vitro Assessment of Their Mechanical Performance. Oper. Dent. 2013, 38, 618–625. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Akhtar, R.; Silikas, N.; Watts, D.C. Nanomechanical properties of dental resin-composites. Dent. Mater. 2012, 28, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahdal, K.; Silikas, N.; Watts, D.C. Development of viscoelastic stability of resin-composites incorporating novel matrices. Dent. Mater. 2015, 31, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Correr, G.M.; Bruschi Alonso, R.C.; Baratto-Filho, F.; Correr-Sobrinho, L.; Sinhoreti, M.A.; Puppin-Rontani, R.M. In vitro long-term degradation of aesthetic restorative materials in food-simulating media. Acta Odontol. Scand. 2012, 70, 101–108. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Silikas, N.; Watts, D.C. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent. Mater. 2012, 28, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Papadogiannis, Y.; Helvatjoglu-Antoniades, M.; Lakes, R. Dynamic mechanical analysis of viscoelastic functions in packable composite resins measured by torsional resonance. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 327–335. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Silikas, N.; Watts, D.C. Temperature-dependence of creep behaviour of dental resin-composites. J. Dent. 2013, 41, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, M.; Masouras, K.; Satterthwaite, J.D.; Silikas, N.; Watts, D.C. Viscoelastic stability of resin-composites under static and dynamic loading. Dent. Mater. 2012, 28, e15–e18. [Google Scholar] [CrossRef] [PubMed]
- Liou, W.J. Effects of Moisture Content on the Creep Behavior of Nylon-6 Thermoplastic Composites. J. Reinf. Plast. Compos. 1998, 17, 39–50. [Google Scholar] [CrossRef]
- Matos, I.C.; Bastos, I.N.; Diniz, M.G.; de Miranda, M.S. Corrosion in artificial saliva of a Ni-Cr-based dental alloy joined by TIG welding and conventional brazing. J. Prosthet. Dent. 2015, 114, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Martos, J.; Osinaga, P.W.R.; Oliveira, E.D.; Castro, L.A.S.D. Hydrolytic degradation of composite resins: Effects on the microhardness. Mater. Res. 2003, 6, 599–604. [Google Scholar] [CrossRef]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Söderholm, K.-J. Degradation of glass filler in experimental composites. J. Dent. Res. 1981, 60, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Fouad, H.; Elleithy, R. High density polyethylene/graphite nano-composites for total hip joint replacements: Processing and in vitro characterization. J. Mech. Behav. Biomed. Mater. 2011, 4, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Fouad, H.; Elleithy, R.; Alothman, O.Y. Thermo-mechanical, Wear and Fracture Behavior of High-density Polyethylene/Hydroxyapatite Nano Composite for Biomedical Applications: Effect of Accelerated Ageing. J. Mater. Sci. Technol. 2013, 29, 573–581. [Google Scholar] [CrossRef]
- Bayne, S.C.; Thompson, J.Y.; Swift, E.J.; Stamatiades, P.; Wilkerson, M. A characterization of first-generation flowable composites. J. Am. Dent. Assoc. 1998, 129, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Ayad, N.M.; Bahgat, H.A.; Al Kaba, E.H.; Buholayka, M.H. Food Simulating Organic Solvents for Evaluating Crosslink Density of Bulk Fill Composite Resin. Int. J. Dent. 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Soh, M.; Yap, A.U. Influence of curing modes on crosslink density in polymer structures. J. Dent. 2004, 32, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Sih, G.C.; Shih, M.T.; Chou, S.C. Transient hygrothermal stresses in composites: Coupling of moisture and heat with temperature varying diffusivity. Int. J. Eng. Sci. 1980, 18, 19–42. [Google Scholar] [CrossRef]
- Chen, T.; Brauer, G. Solvent effects on bonding organo-silane to silica surfaces. J. Dent. Res. 1982, 61, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Baroudi, K.; Silikas, N.; Watts, D.C. Time-dependent visco-elastic creep and recovery of flowable composites. Eur. J. Oral Sci. 2007, 115, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Feilzer, A.; Dauvillier, B. Effect of TEGDMA/BisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites. J. Dent. Res. 2003, 82, 824–828. [Google Scholar] [CrossRef] [PubMed]
Material | Code | Type | Manufacturer Increment Thickness (mm) | Matrix | Filler (wt %) | Manufacturer |
---|---|---|---|---|---|---|
Tetric N-ceram Bulk Fill | TNCBF | Bulk fill | 4 | Bis-GMA, Bis-EMA, UDMA | 78 | Ivoclar Vivadent AG, Schaan, Liechtenstein |
FiltekTM Bulk Fill | FBF | Bulk fill | 4 | AUDMA, AFM, DDDMA, UDMA | 76.5 | 3 M ESPE GmbH, Seefeld, Germany |
SonicFillTM2 | SF2 | Sonic-activated, bulk fill | 5 | Bis-GMA, TEGDMA, Bis-EMA, SIMA | 83.5 | Kerr Corp, Orange, USA |
X-tra fil | XF | Bulk fill | 4 | Bis-GMA, UDMA, TEGDMA | 86 | Voco GmbH Cuxhaven, Germany |
Grandio | GR | Nano-Hybrid | 2 | Bis-GMA, TEDMA, UDMA | 87 | Voco GmbH Cuxhaven, Germany |
Ingredients | Concentration (G/100 ML) |
---|---|
KH2PO4 | 0.3402 |
Na2HPO4 | 0.4450 |
HKCO3 | 1.5017 |
NaCl | 0.5844 |
MgCl2 + 6H2O | 0.0305 |
Citric Acid | 0.5224 |
CaCl2 | 0.2205 |
Materials Code | Dry | Dw | Saliva | Ethanol |
---|---|---|---|---|
FBF | 1.17 (0.10) a, c, A | 1.52 (0.11) a, A | 2.33 (0.15) a, B | 2.59 (0.08) a, B |
SF2 | 0.44 (0.07) b, A | 0.67 (0.08) b, A | 0.75 (0.13) b, A | 0.62 (0.11) b, c, A |
XF | 0.43 (0.14) b, A | 0.62 (0.16) b, A | 0.64 (0.10) b, A | 0.80 (0.14) b, A |
TNC BF | 1.24 (0.05) a, A | 2.07 (0.19) c, B | 2.61 (0.09) a, C | 2.87 (0.18) a, C |
GR | 0.98 (0.03) c, A | 0.28 (0.07) d, B | 0.43 (0.05) c, B, C | 0.54 (0.06) c, C |
Materials Code | Dry | Dw | Saliva | Ethanol |
---|---|---|---|---|
FBF | 0.45 | 0.73 | 1.49 | 1.55 |
SF2 | 0.02 | 0.28 | 0.24 | 0.13 |
XF | 0.11 | 0.31 | 0.17 | 0.44 |
TNC BF | 0.42 | 1.14 | 1.58 | 1.65 |
GR | 0.06 | 0.09 | 0.10 | 0.22 |
Materials Code | Dry | Dw | Saliva | Ethanol |
---|---|---|---|---|
FBF | 61.14 | 51.91 | 35.88 | 40.10 |
SF2 | 94.59 | 59.03 | 67.91 | 79.35 |
XF | 73.99 | 50.20 | 72.59 | 45.31 |
TNC BF | 66.24 | 45.10 | 39.74 | 42.52 |
GR | 94.14 | 64.19 | 76.67 | 60.06 |
Materials Code | Dry | Dw | Saliva | Ethanol |
---|---|---|---|---|
FBF | 0.72 (0.12) a, A | 0.79 (0.01) a, A | 0.83 (0.10) a, A, B | 1.04 (0.07) a, B |
SF2 | 0.42 (0.05) b, A | 0.39 (0.04) b, A | 0.51 (0.09) b, A | 0.49 (0.18) b, A |
XF | 0.32 (0.10) b, A | 0.31 (0.11) b, c, A | 0.46 (0.13) b, A | 0.36 (0.08) b, A |
TNC BF | 0.82 (0.09) c, a, A | 0.93 (0.14) a, A | 1.04 (0.06) c, A, B | 1.22 (0.11) a, B |
GR | 0.93 (0.07) c, A | 0.18 (0.03) c, B | 0.33 (0.09) b, B | 0.32 (0.03) b, B |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrahlah, A.; Khan, R.; Alotaibi, K.; Almutawa, Z.; Fouad, H.; Elsharawy, M.; Silikas, N. Simultaneous Evaluation of Creep Deformation and Recovery of Bulk-Fill Dental Composites Immersed in Food-Simulating Liquids. Materials 2018, 11, 1180. https://doi.org/10.3390/ma11071180
Alrahlah A, Khan R, Alotaibi K, Almutawa Z, Fouad H, Elsharawy M, Silikas N. Simultaneous Evaluation of Creep Deformation and Recovery of Bulk-Fill Dental Composites Immersed in Food-Simulating Liquids. Materials. 2018; 11(7):1180. https://doi.org/10.3390/ma11071180
Chicago/Turabian StyleAlrahlah, Ali, Rawaiz Khan, Khalid Alotaibi, Ziad Almutawa, H. Fouad, Mohamed Elsharawy, and Nikolaos Silikas. 2018. "Simultaneous Evaluation of Creep Deformation and Recovery of Bulk-Fill Dental Composites Immersed in Food-Simulating Liquids" Materials 11, no. 7: 1180. https://doi.org/10.3390/ma11071180
APA StyleAlrahlah, A., Khan, R., Alotaibi, K., Almutawa, Z., Fouad, H., Elsharawy, M., & Silikas, N. (2018). Simultaneous Evaluation of Creep Deformation and Recovery of Bulk-Fill Dental Composites Immersed in Food-Simulating Liquids. Materials, 11(7), 1180. https://doi.org/10.3390/ma11071180