Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment
2.2. Tensile Test
2.3. Transmission Electron Microscopy
2.4. X-ray Diffraction Examinations
2.5. Electrochemical and Stress Corrosion Examinations
- PSCC—stress corrosion susceptibility index for individual material properties;
- PNaCl—material property measured in corroding medium;
- Pair—material property measured in air.
3. Results and Discussion
3.1. Mechanical Properties and Microstructure
3.2. Precipitation Behavior
3.3. Corrosion Resistance
4. Conclusions
- Low-temperature thermomechanical treatment with 30% reduction after solution heat treatment in water from the temperature of 500 °C and with ageing at the temperature of 150 °C ensures higher mechanical properties of the alloy in comparison to CHT.
- AlZn6Mg0.8Zr alloy reveals a microstructure consisting of the α solution matrix and fine-dispersive particles of morphologically differentiated intermetallic phases of the Al3Zr and η–MgZn2 types. Increase of cold deformation results in obtaining a smaller precipitation-free zone after ageing and formation of a greater portion of strengthening phases in the vicinity of grain boundaries. This affects the increase in the distance between precipitates located at grain boundaries.
- Electrochemical corrosion resistance of the AlZn6Mg0.8Zr alloy in the 3.5% NaCl medium decreases along with increasing plastic deformation degree, whereas the opposite behavior occurs in the case of stress corrosion resistance, which is improved. This is related to complex microstructural phenomena, which must be studied in more detail.
Author Contributions
Conflicts of Interest
References
- Hyde, K.B.; Norman, A.F.; Prangnell, P.B. The effect of cooling rate on the morphology of primary Al3Sc inter-metallic particles in Al-Sc alloys. Acta Mater. 2001, 49, 1327–1337. [Google Scholar] [CrossRef]
- Davydov, V.G.; Rostova, T.D.; Zakharov, V.V.; Filatov, Yu.A.; Yelagin, V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Eng. A 2000, 280, 30–36. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Du, Z. Mechanical behavior of Al-Zn-Mg-Cu alloy under tension in semi-solid state. Trans. Nonferrous Met. Soc. China 2016, 26, 643–648. [Google Scholar] [CrossRef]
- Khalid Rafi, H.; Janaki Ram, G.D.; Phanikumar, G.; Prasad Rao, K. Microstructure and tensile properties of friction welded aluminium alloy AA7075-T6. Mater. Design 2010, 31, 2375–2380. [Google Scholar] [CrossRef]
- Fuller, C.B.; Krause, A.R.; Dunand, D.C.; Seidman, D.N. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions. Mater. Sci. Eng. A 2002, 338, 8–16. [Google Scholar] [CrossRef]
- Xiang, H.; Pan, Q.L.; Yu, X.H.; Huang, X.; Sun, X.; Wang, X.D.; Li, M.J. Superplasticity behaviors of Al-Zn-Mg-Zr cold-rolled alloy sheet with minor Sc addition. Mater. Sci. Eng. A 2016, 676, 128–137. [Google Scholar] [CrossRef]
- Lü, X.; Guo, E.; Rometsch, P.; Wang, L. Effect of on-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Trans. Nonferrous Met. Soc. China 2012, 22, 2645–2651. [Google Scholar] [CrossRef]
- Xiao, T.; Deng, Y.; Ye, L.; Lin, H.; Shan, Ch.; Qian, P. Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloys. Mater. Sci. Eng. A 2016, 675, 280–288. [Google Scholar] [CrossRef]
- Deschamps, A.; Bréchet, Y. Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy. Mater. Sci. Eng. A 1998, 251, 200–207. [Google Scholar] [CrossRef]
- Kowalski, A.; Ozgowicz, W.; Grajcar, A.; Lech-Grega, M.; Kurek, A. Microstructure and Fatigue Properties of AlZn6Mg0.8Zr Alloy Subjected to Low-Temperature Thermomechanical Processing. Metals, 2017, 7, 488. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Wan, L.; Zhang, X. Effect of thermomechanical processing on production of Al-Zn-Mg-Cu alloy plate. Mat. Sci. Eng. A 2012, 554, 33–40. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, W.; Jo, D.; Lim, Ch.; Kim, H. Recrystallization behavior of cold rolled Al-Zn-Mg-Cu fabricated by twin roll casting. Trans. Nonferrous Met. Soc. China 2014, 24, 2226–2231. [Google Scholar] [CrossRef]
- El-Baradie, Z.M.; El-Sayed, M. Effect of double thermomechanical treatments on the properties of 7075 Al alloy. J. Mater. Process. Tech. 1996, 62, 76–80. [Google Scholar] [CrossRef]
- Ozgowicz, W.; Kalinowska, E.; Kowalski, A.; Gołombek, K. The structure and mechanical properties of Al-Mg-Mn alloys shaped in the process of thermomechnical treatment. J. Achiev. Mater. Manuf. Eng. 2011, 45, 148–156. [Google Scholar]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L.; Zhang, J. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mat. Sci. Eng. A 2017, 702, 42–52. [Google Scholar] [CrossRef]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L.; Zhang, J. Effect of deformation induced precipitation on grain refinement and improvement of mechanical properties AA 7055 aluminum alloy. Mater. Charact. 2017, 130, 123–134. [Google Scholar] [CrossRef]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L. Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing. J. Alloy Compd. 2017, 716, 220–230. [Google Scholar] [CrossRef]
- Huo, W.T.; Shi, J.T.; Hou, L.G.; Zhang, J.S. An improved thermo-mechanical treatment of high-strength Al-Zn-Mg-Cu alloy for effective grain refinement and ductility modification. J. Mater. Process. Tech. 2017, 239, 303–3014. [Google Scholar] [CrossRef]
- Huo, W.; Hou, L.; Cui, H.; Zhuang, L.; Zhang, J. Fine-grained AA 7075 processed by different thermo-mechanical processings. Mat. Sci. Eng. A 2014, 618, 244–253. [Google Scholar] [CrossRef]
- Segal, V.M. New hot thermo-mechanical processing of heat treatable aluminum alloys. J. Mater. Process. Tech. 2016, 231, 50–57. [Google Scholar] [CrossRef]
- Navaser, M.; Atapour, M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J. Mater. Sci. Technol. 2017, 33, 155–165. [Google Scholar] [CrossRef]
- Li, S.; Guo, D.; Dong, H. Effect of flame rectification on corrosion property of Al-Zn-Mg alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 250–257. [Google Scholar] [CrossRef]
- Lu, X.; Han, X.; Du, Z.; Wang, G.; Lu, L.; Lei, J.; Zhou, T. Effect of microstructure on exfoliation corrosion resistance in an Al-Zn-Mg alloy. Mater. Charact. 2018, 135, 167–174. [Google Scholar] [CrossRef]
- Umamaheshwer Rao, A.C.; Vasu, V.; Govindaraju, M.; Sai Srinadh, K.V. Stress corrosion cracking behavior of 7xxx aluminum alloys: A literature review. Trans. Nonferrous Met. Soc. China 2016, 26, 1447–1471. [Google Scholar]
- Wang, Y.L.; Jiang, H.C.; Li, Z.M.; Yan, D.S.; Zhang, D.; Rong, L.J. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al-Zn-Mg alloy. J. Mater. Sci. Technol. (in press). [CrossRef]
- Peng, X.; Guo, Q.; Liang, X.; Deng, Y.; Gu, Y.; Xu, G.; Yin, Z. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy. Mat. Sci. Eng. A 2017, 688, 146–154. [Google Scholar] [CrossRef]
- Huang, X.; Pan, Q.; Li, B.; Liu, Z.; Huang, Z.; Yin, Z. Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc. J. Alloy Compd. 2015, 650, 805–820. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhang, B.; Lin, H.Q.; Zhou, Y.; Sun, L.; Wang, J.Q.; Han, E.-H.; Ke, W. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al-Zn-Mg alloy. Corros. Sci. 2013, 77, 103–112. [Google Scholar] [CrossRef]
- ISO 6892-1:2016. Metallic materials—Tensile Testing—Part 1: Method of tTest at Room Temperature; Chinese Code: Beijing, China, 2010. [Google Scholar]
- Gigla, M.; Pączkowski, P. The computer aided analysis of electron diffraction patterns. Arch. Mater. Sci. 2006, 1, 49–69. [Google Scholar]
- ISO 17475:2015. Corrosion of Metals and Alloys—Electrochemical Test Methods—Guidelines for Conducting Potentiostatic and Potentiodynamic Polarization Measurements; Chinese Code: Beijing, China, 2010. [Google Scholar]
- Ozgowicz, W. Physicochemical, Structural and Mechanical Factors of Intergranular Brittleness of the α Bronzes at Elevated Temperature; Scientific Notebooks of Silesian University of Technology: Gliwice, Poland, 2004. [Google Scholar]
- Han, N.; Zhang, X.; Liu, S.; Ke, B.; Xin, X. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Mat. Sci. Eng. A 2011, 528, 3714–3721. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Sriram, S.; Veeraraghavan, D.; Vasudevan, V.K. Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055. J. Mater. Sci. 1997, 32, 2883–2894. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Z.Y.; Gao, Z.M. Efect of severe cold rolling on tensile properties and stress corrosion cracking of 7050 aluminum alloy. Mater. Chem. Phys. 2009, 17, 228–233. [Google Scholar] [CrossRef]
Treatment Parameters | Mechanical Properties | ||||||
---|---|---|---|---|---|---|---|
LTTT | |||||||
Temperature of Solution Heat Treatment (°C) | Temperature of Ageing (°C) | Time of Ageing (h) | Degree of Deformation (%) | (MPa) | (MPa) | (%) | (%) |
500 | 150 | 12 | 10% | 256 ± 4 | 321 ± 2 | 10.2 ± 0.4 | 50 ± 5 |
20% | 294 ± 2 | 341 ± 2 | 8.2 ± 1.1 | 47 ± 5 | |||
30% | 301 ± 2 | 347 ± 2 | 9.1 ± 0.9 | 40 ± 4 | |||
CHT | |||||||
500 | 150 | 12 | ––– | 230 ± 3 | 310 ± 2 | 16.8 ± 0.5 | 34 ± 4 |
Degree of Deformation (%) | Ecor (mV) | Icor (μA/cm2) | Rp (kΩ) |
---|---|---|---|
10 | −830 ± 1 | 0.30 ± 0.2 | 17.4 ± 0.5 |
20 | −833 ± 3 | 1.32 ± 0.3 | 6.2 ± 0.2 |
30 | −867 ± 4 | 11.17 ± 0.7 | 5.4 ± 0.9 |
Degree of Deformation (%) | (MPa) | (MPa) | (%) | (%) |
---|---|---|---|---|
Before Corrosion | ||||
10 | 256 ± 4 | 321 ± 2 | 10.2 ± 0.4 | 50 ± 5 |
20 | 294 ± 2 | 341 ± 2 | 8.2 ± 1.1 | 47 ± 5 |
30 | 301 ± 2 | 347 ± 2 | 9.1 ± 0.9 | 40 ± 4 |
After Corrosion | ||||
10 | 249 ± 2 | 316 ± 2 | 9.8 ± 1.3 | 46 ± 3 |
20 | 289 ± 3 | 337 ± 3 | 8.0 ± 0.7 | 45 ± 5 |
30 | 300 ± 4 | 346 ± 4 | 8.9 ± 0.5 | 39 ± 5 |
Degree of Deformation (%) | PSCC Index (%) | |||
---|---|---|---|---|
Rp0.2SCC | RmSCC | ASCC | ZSCC | |
10 | 2.7 | 1.7 | 3.9 | 7.9 |
20 | 1.7 | 1.1 | 2.4 | 5.5 |
30 | 0.2 | 0.2 | 2.2 | 4.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, A.; Ozgowicz, W.; Jurczak, W.; Grajcar, A.; Boczkal, S.; Żelechowski, J. Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy. Materials 2018, 11, 570. https://doi.org/10.3390/ma11040570
Kowalski A, Ozgowicz W, Jurczak W, Grajcar A, Boczkal S, Żelechowski J. Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy. Materials. 2018; 11(4):570. https://doi.org/10.3390/ma11040570
Chicago/Turabian StyleKowalski, Aleksander, Wojciech Ozgowicz, Wojciech Jurczak, Adam Grajcar, Sonia Boczkal, and Janusz Żelechowski. 2018. "Microstructure, Mechanical Properties, and Corrosion Resistance of Thermomechanically Processed AlZn6Mg0.8Zr Alloy" Materials 11, no. 4: 570. https://doi.org/10.3390/ma11040570