A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Confocal Scanning Laser Microscope (CSLM)
3. Result and Discussion
3.1. Solidification Characteristics
3.2. Initial Solidification Process of Steels during Cooling
3.2.1. Hypo-Peritectic Steel
3.2.2. Ultra-Low Carbon Steel
3.2.3. High Carbon Steel
3.3. Measurement of Surface Roughness
3.3.1. Measurement Regions
3.3.2. Surface Roughness
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Suzuki, M.; Yamaoka, Y. Influence of carbon content on solidifying shell growth of carbon steels at the initial stage of solidification. Mater. Trans. 2003, 44, 836–844. [Google Scholar] [CrossRef]
- Du, F.; Wang, X.; Yu, G.; Yan, Z.; Zhu, X.; Xu, J. Study on the non-uniform slab shrinkage of special steel during slab continuous casting. Ironmak. Steelmak. 2017, 41, 1–6. [Google Scholar] [CrossRef]
- Thomas, B.G.; Zhu, H. Thermal Distortion of solidifying shell near meniscus in continuous casting of steel. In Proceedings of the JIM/TMS Solidification Science and Processing Conference, Honolulu, HI, USA, 13–15 December 1995; pp. 197–208. [Google Scholar]
- Griesser, S.; Reid, M.; Bernhard, C.; Dippenaar, R. Diffusional constrained crystal nucleation during peritectic phase transitions. Acta Mater. 2014, 67, 335–341. [Google Scholar] [CrossRef]
- Emi, T.; Fredriksson, H. High-speed continuous casting of peritectic carbon steels. Mater. Sci. Eng. 2005, 413–414, 2–9. [Google Scholar] [CrossRef]
- Suzuki, M.; Chong Hee, Y.; Sato, H.; Tsui, Y.; Shibata, H.; Emi, T. Origin of Heat Transfer Anomaly and Solidifying Shell Deformation of Peritectic Steels in Continuous Casting. Trans. Iron Steel Inst. Jpn. 2007, 36, 171–174. [Google Scholar] [CrossRef]
- Xia, G.; Bernhard, C.; Ilie, S.; Fuerst, C. A Study about the Influence of Carbon Content in the Steel on the Casting Behavior. Steel Res. Int. 2011, 82, 230–236. [Google Scholar] [CrossRef]
- Vdovin, K.N.; Zlov, V.E.; Suspitsin, V.G. Deformation of the skin of a continuous-cast slab in the mold of the caster. Metallurgist 2009, 53, 572–576. [Google Scholar] [CrossRef]
- Moon, S.C. The Peritectic Phase Transition and Continuous Casting Practice. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, March 2015. [Google Scholar]
- Hechu, K.; Slater, C.; Santillana, B.; Samuel, C.; Sridhar, S. A novel approach for interpreting the solidification behaviour of peritectic steels by combining CSLM and DSC. Mater. Charact. 2017, 133, 25–32. [Google Scholar] [CrossRef]
- Nishimura, T.; Morishita, K.; Nagira, T.; Yoshiya, M.; Yasuda, H. Kinetics of the δ/γ interface in the massive-like transformation in Fe-0.3C-0.6Mn-0.3Si alloys. IOP Conf. Ser. Mater. Sci. Eng. 2015, 84, 012062. [Google Scholar] [CrossRef]
- Kerr, H.W.; Cisse, J.; Bolling, G.F. On equilibrium and non-equilibrium peritectic transformations. Acta Metall. 1974, 22, 677–686. [Google Scholar] [CrossRef]
- Harste, K.; Schwerdtfeger, K. Shrinkage of Round Iron-Carbon Ingots during Solidification and Subsequent Cooling. ISIJ Int. 2007, 43, 1011–1020. [Google Scholar] [CrossRef][Green Version]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfand, R.B.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad J. 2002, 62, 189–228. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Hoglund, L.; Shi, P.F.; Sundman, B. Thermo-Calc and DICTRA, computational tools for materials science. Calphad J. 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Wielgosz, E.; Kargul, T. Differential scanning calorimetry study of peritectic steel grades. J. Therm. Anal. Calorim. 2015, 119, 1547–1553. [Google Scholar] [CrossRef]
- Presoly, P.; Pierer, R.; Bernhard, C. Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations. Metall. Mater. Trans. A 2013, 44, 5377–5388. [Google Scholar] [CrossRef]
- Mondragón, J.J.R.; Trejo, M.H.; Román, M.H.; Manuel, D.J.C. Description of the Hypo-peritectic Steel Solidification under Continuous Cooling and Crack Susceptibility. ISIJ Int. 2008, 48, 454–460. [Google Scholar] [CrossRef]
- Shibata, H.; Arai, Y.; Suzuki, M.; Emi, T. Kinetics of peritectic reaction and transformation in Fe-C alloys. Metall. Mater. Trans. B 2000, 31, 981–991. [Google Scholar] [CrossRef]
- Reid, M.; Phelan, D.; Dippenaar, R. Concentrick solidification for high temperature laser scanning confocal microscopy. ISIJ Int. 2004, 44, 565–572. [Google Scholar] [CrossRef]
- Phelan, D.; Reid, M.; Dippenaar, R. Kinetics of the peritectic phase transformation: In-situ, measurements and phase field modeling. Metall. Mater. Trans. A 2006, 37, 985–994. [Google Scholar] [CrossRef]
- Dippenaar, R. In-situ analysis of the peritectic phase transition-relevant to the continuous casting of steel. In Proceedings of the 5th International Congress on the Science and Technology of the Steelmaking, Dresden, Germany, 1–3 October 2012; pp. 1–9. [Google Scholar]
- Griesser, S.; Bernhard, C.; Dippenaar, R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel. Acta Mater. 2014, 81, 111–120. [Google Scholar] [CrossRef]
- Hanao, M.; Kawamoto, M. Flux Film in the Mold of High Speed Continuous Casting. ISIJ Int. 2008, 48, 180–185. [Google Scholar] [CrossRef][Green Version]
- Park, J.K.; Thomas, B.G.; Samarasekera, I.V. Analysis of thermomechanical behavior in billet casting with different mould corner radii. Ironmak. Steelmak. 2002, 29, 359–375. [Google Scholar] [CrossRef]
- Li, C.H.; Thomas, B.G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall. Mater. Trans. B 2004, 35, 1151–1172. [Google Scholar] [CrossRef]
- Meng, Y.; Thomas, B.G. Heat-transfer and solidification model of continuous slab casting: CON1D. Metall. Mater. Trans. B 2003, 34, 685–705. [Google Scholar] [CrossRef]
- Koric, S.; Thomas, B.G.; Voller, V.R. Enhanced latent heat method to incorporate superheat effects into fixed-grid multiphysics simulations. Numer. Heat Transf. Part B 2010, 57, 396–413. [Google Scholar] [CrossRef]
- Koric, S.; Hibbeler, L.C.; Liu, R.; Thomas, B.G. Multiphysics model of metal solidification on the continuum level. Numer. Heat Transf. Part B 2010, 58, 371–392. [Google Scholar] [CrossRef]
- Palumbo, G.; Piccininni, A.; Piglionico, V.; Guglielmi, P.; Sorgente, D.; Tricarico, L. Modelling residual stresses in sand-cast superduplex stainless steel. J. Mater. Process. Technol. 2015, 217, 253–261. [Google Scholar] [CrossRef]
- Mizukami, H.; Yamanaka, A.; Watanabe, T. High Temperature Deformation Behavior of Peritectic Carbon Steel during Solidification. Trans. Iron Steel Inst. Jpn. 2002, 42, 964–973. [Google Scholar] [CrossRef]
- Bernhard, C.; Xia, G. Influence of alloying elements on the thermal contraction of peritectic steels during initial solidification. Ironmak. Steelmak. 2006, 33, 52–56. [Google Scholar] [CrossRef]
- Chen, G.; Shen, H.; Hu, S.; Baudelet, B. Roughening of the free surfaces of metallic sheets during stretch forming. Mater. Sci. Eng. A 1990, 128, 33–38. [Google Scholar]
- Mahmudi, R.; Mehdizadeh, M. Surface roughening during uniaxial and equi-biaxial stretching of 70–30 brass sheets. J. Mater. Process. Technol. 1998, 80–81, 707–712. [Google Scholar] [CrossRef]
- Becker, R. Effects of strain localization on surface roughening during sheet forming. Acta Mater. 1998, 46, 1385–1401. [Google Scholar] [CrossRef]
- YONEKURA MFG, HT-CSLM, Confocal Scanning Laser Microscope. Available online: http://yonekuramfg.wixsite.com/ht-cslm/untitled-cv4z (accessed on 30 January 2018).
- Leach, R.K. Optical Measurement of Surface Topography; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 238–241. [Google Scholar]
- Dippenaar, R.; Moon, S.C.; Szekeres, E.S. Strand surface cracks—The role of abnormally large prior-austenite grains. Iron Steel Technol. 2007, 7, 105–115. [Google Scholar]
- Murakami, H.; Suzuki, M.; Kitagawa, T.; Miyahara, S. Control of Uneven Solidified Shell Formation of Hypo-peritectic Carbon Steels in Continuous Casting Mold. Tetsu-to-Hagane 1992, 78, 105–112. [Google Scholar] [CrossRef]
- Cao, L.F.; Guang, X.; Peng, D.; Wang, G.X.; Hu, D.J. Study on thermal expansion properties of steels. J. Univ. Sci. Technol. Beijing 2014, 36, 639–643. [Google Scholar]
- Tian, S. Physical Properties of Materials, 1st ed.; Beihang University Press: Beijing, China, 2004; p. 240. [Google Scholar]
Steel | Chemical Composition (mass %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | S | P | Al | Ni | Ti | Cr | Fe | |
S1 | 0.102 | 0.211 | 1.22 | 0.001 | 0.011 | 0.039 | 0.120 | 0.017 | 0.179 | bal. |
S2 | 0.002 | 0.01 | 0.40 | 0.002 | 0.010 | 0.023 | - | 0.011 | - | bal. |
S3 | 0.54 | 0.151 | 0.51 | 0.010 | 0.015 | 0.021 | 0.101 | 0.014 | 0.151 | bal. |
Steel Samples/Temperature (°C) | S1 | S2 | S3 | |
---|---|---|---|---|
Equilibrium | δ nucleation | 1518 | 1535 | 1486 |
δ→γ transform | 1487–1451 | 1393–1387 | — | |
Actual (−20 °C/s) | δ nucleation | 1462.5 | 1488.3 | 1338.5 |
δ→γ transform | 1328.5 | 1308.9–1303.1 | — |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wen, G.; Pu, D.; Tang, P. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials 2018, 11, 571. https://doi.org/10.3390/ma11040571
Guo J, Wen G, Pu D, Tang P. A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials. 2018; 11(4):571. https://doi.org/10.3390/ma11040571
Chicago/Turabian StyleGuo, Junli, Guanghua Wen, Dazhi Pu, and Ping Tang. 2018. "A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness" Materials 11, no. 4: 571. https://doi.org/10.3390/ma11040571
APA StyleGuo, J., Wen, G., Pu, D., & Tang, P. (2018). A Novel Approach for Evaluating the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness. Materials, 11(4), 571. https://doi.org/10.3390/ma11040571