Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of CMC Composite, CMC/WAMP Composites and Their Carbon Foams
2.3. Analysis
3. Results and Discussion
3.1. Gel Fraction of CMC/WAMP Composites Obtained at Different EBI Doses
3.2. TGA Analysis of CMC/WAMP Composites
3.3. SEM/EDS Analysis
3.4. Thermal Conductivity
3.5. Compressive Strength
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lei, S.; Guo, Q.; Shi, J.; Liu, L. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 2010, 48, 2644–2673. [Google Scholar] [CrossRef]
- Chen, C.; Kennel, E.B.; Stiller, A.H.; Stansberry, P.G.; Zondlo, J.W. Carbon foam derived from various precursors. Carbon 2006, 44, 1535–1543. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Chen, T.; Lin, Q.; Huang, X. Preparation and properties of graphene nanosheets/carbon foam composites. J. Anal. Appl. Pyrolysis 2016, 117, 290–295. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Mesoporous Ni-Co. based nanowire arrays sup-ported on three-dimensional N-doped carbon foams as non-noble catalysts for efficient oxygen reduction reaction. Microporous Mesoporous Mater. 2016, 231, 128–137. [Google Scholar] [CrossRef]
- Pham, T.N.; Samikannu, A.; Kukkola, J.; Rautio, A.R.; Pitkänen, O.; Dombovari, A.; Lorite, G.S.; Sipola, T.; Toth, G.; Mohl, M.; et al. Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: From environmental to electrical applications. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jana, P.; Palomo del Barrio, E.; Fierro, V.; Medjahdi, G.; Celzard, A. Design of carbon foams for seasonal solar thermal energy storage. Carbon 2016, 109, 771–787. [Google Scholar] [CrossRef]
- Sawant, S.Y.; Hab, T.H.; Ansari, S.A.; Shim, J.H.; Nguyen, A.T.N.; Shim, J.J.; Cho, M.H. A metal-free and non-precious multifunctional 3D carbon foam for high-energy density supercapacitors and enhanced power generation in microbial fuel cells. J. Ind. Eng. Chem. 2018, 60, 431–440. [Google Scholar] [CrossRef]
- Letellier, M.; Delgado-Sanchez, C.; Khelifa, M.; Fierro, V.; Celzard, A. Mechanical properties of model vitreous carbon foams. Carbon 2017, 116, 562–571. [Google Scholar] [CrossRef]
- Li, S.Z.; Guo, Q.G.; Song, Y.; Liu, Z.J.; Shi, J.L.; Liu, L.; Yan, X. Carbon foams with high compressive strength derived from mesophase pitch treated by toluene extraction. Carbon 2007, 45, 2843–2845. [Google Scholar] [CrossRef]
- Lin, Q.L.; Luo, B.; Qu, L.J.; Fang, C.Q.; Chen, Z.M. Direct preparation of carbon foam by pyrolysis of cyanate ester resin at ambient pressure. J. Anal. Appl. Pyrolysis 2013, 104, 714–717. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Lin, Q.; Dong, S.; Xiong, L. Preparation and properties of montmorillonite/carbon foam nanocomposites. Appl. Clay. Sci. 2017, 140, 31–37. [Google Scholar] [CrossRef]
- Song, S.A.; Lee, Y.; Kim, Y.S.; Kim, S.S. Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Compos. Strcut. 2017, 173, 1–8. [Google Scholar] [CrossRef]
- Gao, N.; Cheng, B.; Hou, H.; Zhang, R. Meshophase pitch based carbon foams as sound absorbers. Mater. Lett. 2018, 212, 243–246. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Zhan, L.; Liu, X. Coal tar pitch based carbon foam for thermal insulating material. Mater. Lett. 2016, 169, 95–98. [Google Scholar] [CrossRef]
- Tzvetkov, G.; Tsyntsarski, B.; Balashev, K.; Spassov, T. Microstructural investigations of carbon foams derived from modified coal-tar pitch. Micron 2016, 89, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Benchablane, A.; Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym. 2008, 286, 1173–1180. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Wang, Z.; Liu, H. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes. Mater. Chem. Phys. 2017, 187, 133–140. [Google Scholar] [CrossRef]
- Hwang, E.H.; Lo, Y.S.; Jeon, J.K. Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate. J. Ind. Eng. Chem. 2008, 14, 265–271. [Google Scholar] [CrossRef]
- Ribeiro, C.E.G.; Rodriguez, R.J.S. Influence of compaction pressure and particle content on thermal and mechanical behavior of artificial marbles with marble waste and unsaturated polyester. Mater. Res. 2015, 18, 283–290. [Google Scholar] [CrossRef]
- Gomes Ribeiro, C.E.; Sanchez Rodriguez, R.J.; de Carvalho, E.A. Microstructure and mechanical properties of artificial marble. Constr. Build. Mater. 2017, 49, 149–155. [Google Scholar] [CrossRef]
- Shin, H.K.; Jeun, J.P.; Kang, P.H. The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation. Fiber Polym. 2012, 13, 724–728. [Google Scholar] [CrossRef]
- Shin, H.K.; Park, M.; Kang, P.H.; Choi, H.S.; Park, S.J. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J. Ind. Eng. Chem. 2014, 20, 3789–3792. [Google Scholar] [CrossRef]
- An, J.C. Synthesis of the combined inter-and intra-crosslinked nanohydrogels by e-beam ionizing radiation. J. Ind. Eng. Chem. 2010, 16, 657–661. [Google Scholar] [CrossRef]
- Li, W.Q.; Zhang, H.B.; Xiong, X.; Xiao, F. Influence of fiber content on the structure and properties of short carbon fiber reinforced carbon foam. Mater. Sci. Eng. A 2010, 527, 7274–7278. [Google Scholar] [CrossRef]
- Wang, S.; Luo, R.; Ni, Y. Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres. Mater. Sci. Eng. A 2010, 527, 3392–3395. [Google Scholar] [CrossRef]
- Lin, Q.; Qu, L.; Luo, B.; Fang, C.; Luo, K. Preparation and properties of multiwall carbon nanotubes/carbon foam composites. J. Anal. Appl. Pyrolysis 2014, 105, 177–182. [Google Scholar] [CrossRef]
Carbon Foam | Carbon (C) | Oxygen (O) | Sodium (Na) | Aluminium (Al) |
---|---|---|---|---|
CMC | 50.01 | 30.62 | 19.37 | 0 |
CMC/1 wt % WAMP | 31.51 | 38.12 | 25.81 | 4.57 |
CMC/2 wt % WAMP | 41.71 | 35.40 | 17.30 | 5.60 |
CMC/3 wt % WAMP | 52.48 | 27.04 | 12.58 | 7.90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.G.; Kim, Y.S.; Kwac, L.K.; Chae, S.-H.; Shin, H.K. Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization. Materials 2018, 11, 469. https://doi.org/10.3390/ma11040469
Kim HG, Kim YS, Kwac LK, Chae S-H, Shin HK. Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization. Materials. 2018; 11(4):469. https://doi.org/10.3390/ma11040469
Chicago/Turabian StyleKim, Hong Gun, Yong Sun Kim, Lee Ku Kwac, Su-Hyeong Chae, and Hye Kyoung Shin. 2018. "Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization" Materials 11, no. 4: 469. https://doi.org/10.3390/ma11040469
APA StyleKim, H. G., Kim, Y. S., Kwac, L. K., Chae, S. -H., & Shin, H. K. (2018). Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization. Materials, 11(4), 469. https://doi.org/10.3390/ma11040469