Next Article in Journal
Synthesis, Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison
Previous Article in Journal
Application of Silver Nanostructures Synthesized by Cold Atmospheric Pressure Plasma for Inactivation of Bacterial Phytopathogens from the Genera Dickeya and Pectobacterium
Previous Article in Special Issue
Analyzing and Modelling the Corrosion Behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/Graphene Nanocomposite Coatings
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Materials 2018, 11(3), 332; https://doi.org/10.3390/ma11030332

Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

1
School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad 46000, Pakistan
2
Bournemouth University, NanoCorr, Energy & Modelling (NCEM) Research Group, Poole House P123, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
*
Author to whom correspondence should be addressed.
Received: 29 October 2017 / Revised: 15 February 2018 / Accepted: 18 February 2018 / Published: 25 February 2018
(This article belongs to the Special Issue Wear-Corrosion Synergy, Nanocoating and Control of Materials)
Full-Text   |   PDF [8251 KB, uploaded 25 February 2018]   |  

Abstract

Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples. View Full-Text
Keywords: nanocomposite coating; corrosion; Electrochemical Impedance Spectroscopy (EIS); seawater; crude oil; few layers grapheme Polyvinyl alcohol (PVA); Titanium Oxide (TiO2); direct current (DC); alternating current (AC); Polyaniline (PANI) nanocomposite coating; corrosion; Electrochemical Impedance Spectroscopy (EIS); seawater; crude oil; few layers grapheme Polyvinyl alcohol (PVA); Titanium Oxide (TiO2); direct current (DC); alternating current (AC); Polyaniline (PANI)
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ammar, A.U.; Shahid, M.; Ahmed, M.K.; Khan, M.; Khalid, A.; Khan, Z.A. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline. Materials 2018, 11, 332.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top