DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Geometrical Structure of the Modeled Systems
3.2. Band Structure and Partial Density of States of the Modeled Systems
3.3. Photo-Response of the Modeled Systems
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 1986, 123, 126–128. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, T.; Li, T.; Yang, K. Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl. Catal. B Environ. 2008, 83, 177–185. [Google Scholar] [CrossRef]
- Khan, M.; Yi, Z.; Gul, S.R.; Wang, Y.; Fawad, U. Visible-light-active silver-, vanadium-codoped TiO2 with improved photocatalytic activity. J. Mater. Sci. 2017, 52, 5634–5640. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Zheng, J.; Yan, X.; Li, D.; Chen, S.; Chu, W. Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis. J. Alloys Compd. 2011, 509, 9970–9976. [Google Scholar] [CrossRef]
- Bonch-Bruevich, V.L.K.; Robert, S. The Electronic Structure of Heavily Doped Semiconductors; American Elsevier Pub. Co.: New York, NY, USA, 1966; pp. 55–68. [Google Scholar]
- Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 11414–11419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Yang, H.; Xue, X.; Liu, Z. Doping TiO2 with boron or/and cerium elements: Effects on photocatalytic antimicrobial activity. Vacuum 2016, 131, 58–64. [Google Scholar] [CrossRef]
- Liu, X.; Khan, M.; Liu, W.; Xiang, W.; Guan, M.; Jiang, P.; Cao, W. Synthesis of nanocrystalline Ga–TiO2 powders by mild hydrothermal method and their visible light photoactivity. Ceram. Int. 2015, 41, 3075–3080. [Google Scholar] [CrossRef]
- Michalow, K.A.; Otal, E.H.; Burnat, D.; Fortunato, G.; Emerich, H.; Ferri, D.; Heel, A.; Graule, T. Flame-made visible light active TiO2:Cr photocatalysts: Correlation between structural, optical and photocatalytic properties. Catal. Today 2013, 209, 47–53. [Google Scholar] [CrossRef]
- Zukalova, M.; Bousa, M.; Bastl, Z.; Jirka, I.; Kavan, L. Electrochemical doping of compact TiO2 thin layers. J. Phys. Chem. C 2014, 118, 25970–25977. [Google Scholar] [CrossRef]
- Khan, M.; Yi, Z.; Gul, S.R.; Fawad, U.; Muhammad, W. Anomalous photodegradation response of Ga, N codoped TiO2 under visible light irradiations: An interplay between simulations and experiments. J. Phys. Chem. Solids 2017, 110, 241–247. [Google Scholar] [CrossRef]
- Dzwigaj, S.; Arrouvel, C.; Breysse, M.; Geantet, C.; Inoue, S.; Toulhoat, H.; Raybaud, P. DFT makes the morphologies of anatase-TiO2 nanoparticles visible to IR spectroscopy. J. Catal. 2005, 236, 245–250. [Google Scholar] [CrossRef]
- Khan, M.; Cao, W. Development of photocatalyst by combined nitrogen and yttrium doping. Mater. Res. Bull. 2014, 49, 21–27. [Google Scholar] [CrossRef]
- Xiao, Q.; Gao, L. One-step hydrothermal synthesis of C, W-codoped mesoporous TiO2 with enhanced visible light photocatalytic activity. J. Alloys Compd. 2013, 551, 286–292. [Google Scholar] [CrossRef]
- Mu, W.; Herrmann, J.-M.; Pichat, P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 1989, 3, 73–84. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Z.; Yue, L.; Liu, J.; Gan, Z.; Shu, C.; Zhang, T.; Shi, J.; Xiong, R. (Mo + N) codoped TiO2 for enhanced visible-light photoactivity. Appl. Surf. Sci. 2011, 257, 9355–9361. [Google Scholar] [CrossRef]
- Yang, X.; Cao, C.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl. Catal. B Environ. 2009, 91, 657–662. [Google Scholar] [CrossRef]
- Jia, L.; Wu, C.; Han, S.; Yao, N.; Li, Y.; Li, Z.; Chi, B.; Pu, J.; Jian, L. Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst. J. Alloys Compd. 2011, 509, 6067–6071. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Zeitschrift für Kristallographie 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Song, Y.; Chen, N.; Cao, W. Effect of V doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2. Mater. Chem. Phys. 2013, 142, 148–153. [Google Scholar] [CrossRef]
- Khan, M.; Cao, W. Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study. J. Appl. Phys. 2013, 114, 183514. [Google Scholar] [CrossRef]
- Khan, M.; Xu, J.; Chen, N.; Cao, W. First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2. J. Alloys Compd. 2012, 513, 539–545. [Google Scholar] [CrossRef]
- Burdett, J.K.; Hughbanks, T.; Miller, G.J.; Richardson, J.W.; Smith, J.V. Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 1987, 109, 3639–3646. [Google Scholar] [CrossRef]
- Matiullah Khan, J.X.; Cao, W.; Liu, Z.-K. Mo-doped TiO2 with Enhanced Visible Light Photocatalytic Activity: A Combined Experimental and Theoretical Study. J. Nanosci. Nanotechnol. 2013, 14, 6865–6871. [Google Scholar] [CrossRef]
- Khan, M.; Cao, W.; Chen, N.; Asadullah; Iqbal, M.Z. Ab-initio calculations of synergistic chromium–nitrogen codoping effects on the electronic and optical properties of anatase TiO2. Vacuum 2013, 92, 32–38. [Google Scholar] [CrossRef]
- Khan, M.; Jiang, P.; Li, J.; Cao, W. Enhanced photoelectrochemical properties of TiO2 by codoping with tungsten and silver. J. Appl. Phys. 2014, 115, 153103. [Google Scholar] [CrossRef]
- Kafizas, A.; Crick, C.; Parkin, I.P. The combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a gradating substitutional/interstitial N-doped anatase TiO2 thin-film; UVA and visible light photocatalytic activities. J. Photochem. Photobiol. A Chem. 2010, 216, 156–166. [Google Scholar] [CrossRef]
- Mi, L.; Zhang, Y.; Wang, P.-N. First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2. Chem. Phys. Lett. 2008, 458, 341–345. [Google Scholar] [CrossRef]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63, 1909–1920. [Google Scholar] [CrossRef]
- Khan, M.; Cao, W.; Chen, N.; Usman, Z.; Khan, D.F.; Toufiq, A.M.; Khaskheli, M.A. Influence of tungsten doping concentration on the electronic and optical properties of anatase TiO2. Curr. Appl. Phys. 2013, 13, 1376–1382. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.-T.; He, J.; Tian, Y. Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys. Rev. B 2005, 71, 125132. [Google Scholar] [CrossRef]
Systems | O-Ti | O-O | O-Fe | Fe-Ti | O-N | N-Ti | Fe-N | Ti-Ti | N-N |
---|---|---|---|---|---|---|---|---|---|
PT | 1.9622 | 2.6346 | - | - | - | - | - | - | - |
FeT | 1.9488 | 2.6990 | 1.8900 | 2.9945 | - | - | - | - | - |
NT | 1.9473 | 2.6945 | - | - | 2.6675 | 2.0390 | - | - | - |
Model A | 1.9479 | 2.6766 | 1.9289 | 2.9684 | 2.8328 | 2.0059 | 2.9684 | - | - |
Model B | 1.9520 | 2.7025 | 1.8739 | - | 2.8018 | 1.8951 | - | 2.9780 | - |
Model C | 1.9479 | 2.7035 | 1.8940 | 2.8534 | 2.2241 | 2.7725 | - | 2.9377 | 2.2207 |
PT | FeT | NT | Model A | Model B | Model C | |
---|---|---|---|---|---|---|
Band gap (eV) | 3.20 | 2.061 | 2.867 | 1.851 | 1.798 | 0.527 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramin Gul, S.; Khan, M.; Yi, Z.; Wu, B. DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2. Materials 2018, 11, 313. https://doi.org/10.3390/ma11020313
Ramin Gul S, Khan M, Yi Z, Wu B. DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2. Materials. 2018; 11(2):313. https://doi.org/10.3390/ma11020313
Chicago/Turabian StyleRamin Gul, Sahar, Matiullah Khan, Zeng Yi, and Bo Wu. 2018. "DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2" Materials 11, no. 2: 313. https://doi.org/10.3390/ma11020313
APA StyleRamin Gul, S., Khan, M., Yi, Z., & Wu, B. (2018). DFT Insights into the Role of Relative Positions of Fe and N Dopants on the Structure and Properties of TiO2. Materials, 11(2), 313. https://doi.org/10.3390/ma11020313