Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review
Abstract
:1. Introduction
2. Method of Synthesis of Titania-Based Materials
2.1. The Hydrothermal Method
2.2. The Sol-Gel Method
2.3. The Electrospinning Method
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stoyanova, A.; Hitkova, H.; Bachvarova-Nedelcheva, A.; Iordanova, R.; Ivanova, N.; Sredkova, M. Synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via nonhydrolytic route. J. Chem. Technol. Metall. 2013, 48, 154–161. [Google Scholar]
- Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845–848. [Google Scholar] [CrossRef]
- Gouma, P.I.; Mills, M.J.; Sandhage, K.H. Fabrication of free-standing titania-based gas sensors by the oxidation of metallic titanium foils. J. Am. Ceram. Soc. 2000, 83, 1007–1009. [Google Scholar] [CrossRef]
- Oey, C.C.; Djurišić, A.B.; Wang, H.; Man, K.K.Y.; Chan, W.K.; Xie, M.H.; Leung, Y.H.; Pandey, A.; Nunzi, J.-M.; Chui, P.C. Polymer-TiO2 solar cells: TiO2 interconnected network for improved cell performance. Nanotechnology 2006, 17, 706–713. [Google Scholar] [CrossRef]
- Polleux, J.; Gurlo, A.; Barsan, N.; Weimar, U.; Antonietti, M.; Niederberger, M. Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed. 2006, 45, 261–265. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, C.; Robertson, J.M.C.; Bahnemann, D.W.; Robertson, P.K.J. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: A review. Res. Chem. Intermed. 2007, 33, 359–375. [Google Scholar] [CrossRef]
- Sobczyński, A.; Dobosz, A. Water purification by photocatalysis on semiconductors. Pol. J. Environ. Stud. 2001, 10, 195–205. [Google Scholar]
- Xu, X.; Wang, J.; Tian, J.; Wang, X.; Dai, J.; Liu, X. Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange. Ceram. Int. 2011, 37, 2201–2206. [Google Scholar] [CrossRef]
- Liao, D.L.; Badour, C.A.; Liao, B.Q. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol. A 2008, 194, 11–19. [Google Scholar] [CrossRef]
- Siwinska-Stefanska, K.; Kubiak, A.; Kurc, B.; Moszynski, D.; Goscianska, J.; Jesionowski, T. An active anode material based on titania and zinc oxide hybrids fabricated via hydrothermal route: Comperehensive physicochemical and electrochemical evaluations. J. Electrochem. Soc. 2018, 165, A3056–A3066. [Google Scholar] [CrossRef]
- Siwinska-Stefanska, K.; Paukszta, D.; Piasecki, A.; Jesionowski, T. Synthesis and physicochemical characteristics of titanium dioxide doped with selected metals. Physicochem. Probl. Miner. Process. 2014, 50, 265–276. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, J.; Chen, R.; Zhou, D.; Xiang, L. A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef]
- Wang, J.; Gao, L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Commun. 2004, 132, 269–271. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Xu, M.; Wang, Y.; Zhu, B.; Zhang, S.; Huang, W.; Wu, S. Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des. 2009, 9, 3532–3537. [Google Scholar] [CrossRef]
- Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S. ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 2012, 162, 237–243. [Google Scholar] [CrossRef]
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, S.; Shimizu, T.; Otsuka, K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int. J. Hydrogen Energy 2004, 29, 1065–1073. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, H.; Yang, M.; Ilu, Y.; Shen, G.; Yu, R. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix. Anal. Chim. Acta 2004, 525, 213–220. [Google Scholar] [CrossRef]
- Liu, Q.; Long, S.; Lv, H.; Wang, W.; Niu, J.; Huo, Z.; Chen, J.; Liu, M. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 2010, 4, 6162–6188. [Google Scholar] [CrossRef] [PubMed]
- Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M.T.; Kureti, S.; Reichert, D.; Schott, F.; Weisweiler, W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl. Catal. B 2006, 62, 104–114. [Google Scholar] [CrossRef]
- Wysokowski, M.; Szalaty, T.J.; Jesionowski, T.; Motylenko, M.; Rafaja, D.; Koltsov, I.; Stöcker, H.; Bazhenov, V.V.; Ehrlich, H.; Stelling, A.L.; et al. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites. Mater. Chem. Phys. 2017, 188, 115–124. [Google Scholar] [CrossRef]
- Emeline, A.; Kataeva, G.V.; Litke, A.S.; Rudakova, A.V.; Ryabchuk, V.K.; Serpone, N. Spectroscopic and photoluminescence studies of a wide band gap insulating material: Powdered and colloidal ZrO2 sols. Laungmir 1998, 7463, 5011–5022. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kurc, B. A composite TiO2-SiO2-ZrO2 oxide system as a high-performance anode material for lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A728–A734. [Google Scholar] [CrossRef]
- Jangra, S.L.; Stalin, K.; Dilbaghi, N.; Kumar, S.; Tawale, J.; Singh, S.P.; Pasricha, R. Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnol. 2012, 12, 7105–7112. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Xie, D.; Cao, L.; Du, F. Synthesis and characterization of TiO2/ZrO2 coaxial core-shell composite nanotubes for photocatalytic applications. Ceram. Int. 2014, 40, 12647–12653. [Google Scholar] [CrossRef]
- Kokporka, L.; Onsuratoom, S.; Puangpetch, T.; Chavadej, S. Sol-gel-synthesized mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystals and their photocatalytic sensitized H2 production activity under visible light irradiation. Mater. Sci. Semicond. Process. 2013, 16, 667–678. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, K.; Fu, H.; Pan, K.; Zhang, L.; Wang, L.; Sun, C. Multi-modal mesoporous TiO2-ZrO2 composites with high photocatalytic activity and hydrophilicity. Nanotechnology 2008, 19, 035610. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Hu, S.; Ren, B.; Wang, J.; Jing, X. Synthesis of nanocomposite TiO2/ZrO2 prepared by different templates and photocatalytic properties for the photodegradation of Rhodamine B. Powder Technol. 2013, 235, 27–32. [Google Scholar] [CrossRef]
- Liu, H.; Su, Y.; Hu, H.; Cao, W.; Chen, Z. An ionic liquid route to prepare mesoporous ZrO2-TiO2 nanocomposites and study on their photocatalytic activities. Adv. Powder Technol. 2013, 24, 683–688. [Google Scholar] [CrossRef]
- Siwińska-Stefańska, K.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO binary oxide systems: Comprehensive characterization and tests of photocatalytic activity. Materials 2018, 11, 841. [Google Scholar] [CrossRef]
- Tian, J.; Chen, L.; Dai, J.; Wang, X.; Yin, Y.; Wu, P. Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process. Ceram. Int. 2009, 35, 2261–2270. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Visible-light-induced aerobic thiocyanation of indoles using reusable TiO2/MoS2 nanocomposite photocatalyst. Tetrahedron Lett. 2016, 57, 1771–1774. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, C.; Xiao, F.; Wang, J.; Su, X. Synthesis of nano-TiO2-decorated MoS2 nanosheets for lithium ion batteries. New J. Chem. 2015, 39, 683–688. [Google Scholar] [CrossRef]
- Roy, R. Accelerating the kinetics of low-temperature inorganic syntheses. J. Solid State Chem. 1994, 111, 11–17. [Google Scholar] [CrossRef]
- Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. 1985, 24, 1026–1040. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880–2881. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cai, Y.; Zhang, R.Q. Growth of nanowires. Mater. Sci. Eng. R Rep. 2008, 60, 1–51. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G.; Cheng, B.; Zhou, M. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B Environ. 2007, 69, 171–180. [Google Scholar] [CrossRef]
- Jung, J.; Perrut, M. Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids 2001, 20, 179–219. [Google Scholar] [CrossRef]
- Li, W.J.; Shi, E.W.; Zhong, W.Z.; Yin, Z.W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 1999, 203, 186–196. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Parmon, V.N.; Lapkin, A.A.; Walsh, F.C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 2004, 14, 3370–3377. [Google Scholar] [CrossRef]
- Byrappa, K.; Yoshimura, M. Hydrothermal technology—Principles and applications. In Handbook of Hydrothermal Technology, 2nd ed.; William Andrew Publishing LLC.: Norwich, NY, USA, 2013; pp. 1–52. [Google Scholar]
- Byrappa, K.; Yoshimura, M. Physical chemistry of hydrothermal growth of crystals. In Handbook of Hydrothermal Technology, 2nd ed.; William Andrew Publishing LLC.: Norwich, NY, USA, 2013; pp. 139–175. [Google Scholar]
- Shen, J.; Yan, B.; Shi, M.; Ma, H.; Li, N.; Ye, M. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 2011, 21, 3415–3421. [Google Scholar] [CrossRef]
- Riman, R.E.; Suchanek, W.L.; Lencka, M.M. Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mater. 2002, 27, 15–36. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Li, G.H.; Jin, Y.X.; Zhang, Y.; Zhang, J.; Zhang, L.D. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 2002, 365, 300–304. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Su, B.L. Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf. A Physicochem. Eng. Asp. 2004, 241, 173–183. [Google Scholar] [CrossRef]
- Shandilya, M.; Rai, R.; Singh, J. Review: Hydrothermal technology for smart materials. Adv. Appl. Ceram. 2016, 115, 354–376. [Google Scholar] [CrossRef]
- Zhang, L.; Jeem, M.; Okamoto, K.; Watanabe, S. Photochemistry and the role of light during the submerged photosynthesis of zinc oxide nanorods. Sci. Rep. 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, S.; Luan, D.; Boey, F.Y.C.; Chen, J.S.; Lou, X.W. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155–7157. [Google Scholar] [CrossRef] [PubMed]
- Komarneni, S.; Roy, R.; Li, Q.H. Microwave-hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 1992, 27, 1393–1405. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Conner, W.C.; Yngvesson, K.S. Microwave synthesis of nanoporous materials. Chem. Phys. Chem. 2006, 7, 296–319. [Google Scholar] [CrossRef] [PubMed]
- Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Wang, Y.; Xu, L.; Sun, P.; Su, Z.; Jin, F.; Liu, F.; Sun, Y.; Lu, G. 3D TiO2/ZnO composite nanospheres as an excellent electron transport anode for efficient dye-sensitized solar cells. RSC Adv. 2016, 6, 51320–51326. [Google Scholar] [CrossRef]
- Cheng, P.; Du, S.; Cai, Y.; Liu, F.; Sun, P.; Zheng, J.; Lu, G. Tripartite layered photoanode from hierarchical anatase TiO2 urchin-like spheres and P25: A candidate for enhanced efficiency dye sensitized solar cells. J. Phys. Chem. C 2013, 117, 24150–24156. [Google Scholar] [CrossRef]
- Li, Y. Synthesis and characterization of TiO2 doped ZnO microtubes. Chin. J. Chem. Phys. 2010, 23, 358–362. [Google Scholar] [CrossRef]
- Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method. Mater. Charact. 2015, 101, 153–158. [Google Scholar] [CrossRef]
- Zhang, M.; An, T.; Liu, X.; Hu, X.; Sheng, G.; Fu, J. Preparation of a high-activity ZnO/TiO2 photocatalyst via homogeneous hydrolysis method with low temperature crystallization. Mater. Lett. 2010, 64, 1883–1886. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Chen, X.; Tang, Y.; Jiang, Y.; Peng, Z.; Wang, H. One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Appl. Surf. Sci. 2014, 307, 263–271. [Google Scholar] [CrossRef]
- Rusu, E.; Ursaki, V.; Gutul, T.; Vlazan, P.; Siminel, A. Characterization of TiO2 nanoparticles and ZnO/TiO2 composite obtained by hydrothermal method. In 3rd International Conference on Nanotechnologies and Biomedical Engineering; Sontea, V., Tiginyanu, I., Eds.; Springer: Singapore, 2016; Volume 55, pp. 93–96. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Hu, S.; Li, J. Preparation and enhanced photoelectrochemical performance of coupled bicomponent. J. Phys. Chem. C 2008, 112, 117–122. [Google Scholar] [CrossRef]
- Wang, C.; Hwang, W.; Chang, K.; Ko, H.; Hsi, C.; Huang, H.; Wang, M. Formation and morphology of Zn2Ti3O8 powders using hydrothermal process without dispersant agent or mineralizer. Int. J. Mol. Sci. 2011, 12, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Ashok, C.; Venkateswara Rao, K. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application. Superlattices Microstruct. 2014, 76, 46–54. [Google Scholar] [CrossRef]
- Divya, K.S.; Marilyn, M.X.; Vandana, P.V.; Rethu, V.N.; Suresh, M. A quaternary TiO2 /ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. New J. Chem. 2017, 41, 6445–6454. [Google Scholar] [CrossRef]
- Cho, I.S.; Chen, Z.; Forman, A.J.; Kim, D.R.; Rao, P.M.; Jaramillo, T.F.; Zheng, X. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984. [Google Scholar] [CrossRef] [PubMed]
- Macák, J.M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. 2005, 44, 2100–2102. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.S.; Kienle, L.; Guo, Y.G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T.; et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626. [Google Scholar] [CrossRef] [PubMed]
- Keis, K.; Magnusson, E.; Lindstr, H.; Lindquist, S.; Hagfeldt, A.; Lindström, H.; Lindquist, S.; Hagfeldt, A. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 2002, 73, 51–58. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Wang, C.; Ao, Y.; Wang, P.; Hou, J.; Qian, J. Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres. Appl. Surf. Sci. 2010, 257, 227–231. [Google Scholar] [CrossRef]
- Chen, J.; Nie, X.; Shi, H.; Li, G.; An, T. Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene. Chem. Eng. J. 2013, 228, 834–842. [Google Scholar] [CrossRef]
- Sui, Y.; Yang, H.; Fu, W.; Xu, J.; Chang, L.; Zhu, H.; Yu, Q.; Li, M.; Zou, G. Preparation and characterization of hollow glass microspheres/ZnO composites. J. Alloys Compd. 2009, 469, 2–6. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, S.; Pramanik, S.; Devi, P.S.; Kumar, G.S. A new insight into the interaction of ZnO with calf thymus DNA through surface defects. J. Photochem. Photobiol. B Biol. 2018, 178, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef] [PubMed]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: A timber industry waste. Dyes Pigments 2004, 63, 243–250. [Google Scholar] [CrossRef]
- Murugan, A.V.; Samuel, V.; Ravi, V. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Mater. Lett. 2006, 60, 479–480. [Google Scholar] [CrossRef]
- Cabello, G.; Davoglio, R.A.; Pereira, E.C. Microwave-assisted synthesis of anatase-TiO2 nanoparticles with catalytic activity in oxygen reduction. J. Electroanal. Chem. 2017, 794, 36–42. [Google Scholar] [CrossRef]
- Leahy, J.J. ZrO2-modified TiO2 nanorod composite: Hydrothermal synthesis, characterization and application in esterification of organic acid. Mater. Chem. Phys. 2014, 145, 82–89. [Google Scholar] [CrossRef]
- Tomar, L.J.; Chakrabarty, B.S. Synthesis, structural and optical properties of TiO2-ZrO2 nanocomposite by hydrothermal method. Adv. Mater. Lett. 2013, 4, 64–67. [Google Scholar] [CrossRef]
- Kubo, K.; Hosokawa, S.; Furukawa, S.; Inoue, M. Synthesis of ZrO2-TiO2 solid solutions by various synthetic methods in the region of high zirconium contents. J. Mater. Sci. 2008, 2198–2205. [Google Scholar] [CrossRef]
- Hirano, M.; Nakahara, C.; Ota, K.; Tanaike, O.; Inagaki, M. Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 2003, 170, 39–47. [Google Scholar] [CrossRef]
- Tomar, L.J.; Bhatt, P.J.; Desai, R.K.; Chakrabarty, B.S.; Panchal, C.J. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite. AIP Conf. Proc. 2016, 1731, 50132. [Google Scholar] [CrossRef]
- Yao, B.; Han, X.; Ying, L.; Peng, C.; Zhang, C. Hydrothermal synthesis and photocatalytic activity of TiO2-ZrO2 hybrid composite microspheres. Mater. Sci. Forum 2016, 852, 257–263. [Google Scholar] [CrossRef]
- Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F.J.; Bennici, S.; Auroux, A. Hydrothermal synthesis and characterization of zirconia based catalysts. J. Solid State Chem. 2013, 203, 79–85. [Google Scholar] [CrossRef]
- Ueda, M.; Sasaki, Y.; Ikeda, M.; Ogawa, M.; Fujitani, W.; Nakano, T. Chemical-hydrothermal synthesis of bioinert ZrO2-TiO2 films on pure Ti substrates and proliferation of osteoblast-like cells. Mater. Trans. 2009, 50, 2147–2153. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Kim, K.; Cho, S.; Seo, M.; Kim, M.; Lee, J.; Kim, J.; Kim, K.; Cho, S.; et al. Preparations of titanium composite electrodes from commercial inorganic pigment and its application to light scattering layers on dye-sensitized solar cells. Mol. Cryst. Liq. Cryst. 2011, 539, 156–165. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef] [PubMed]
- Kristianto, Y.; Taufik, A.; Saleh, R. Preparation and catalytic performance of ZrO2- nanographene platelets composites. J. Phys. Conf. Ser. 2016, 776, 012040. [Google Scholar] [CrossRef]
- Moazami, A.; Montazer, M. A novel multifunctional cotton fabric using ZrO2 NPs/urea/CTAB/MA/SHP: Introducing flame retardant, photoactive and antibacterial properties. J. Text. Inst. 2016, 107, 1253–1263. [Google Scholar] [CrossRef]
- Sudrajat, H.; Babel, S.; Sakai, H.; Takizawa, S. Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO2. J. Environ. Manag. 2016, 165, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Shakeel Ahmad, M.; Pandey, A.K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 2017, 77, 89–108. [Google Scholar] [CrossRef]
- Ren, X.; Qi, X.; Shen, Y.; Xiao, S.; Xu, G.; Zhang, Z.; Huang, Z.; Zhong, J. 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity. J. Phys. D Appl. Phys. 2016, 49, 315304. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, L.; Lu, Z.; Jin, Z.; Wang, X.; Xu, G.; Zhang, E.; Wang, H.; Kong, Z.; Xi, J.; et al. Crystal face regulating MoS2/TiO2 (001) heterostructure for high photocatalytic activity. J. Alloys Compd. 2016, 688, 840–848. [Google Scholar] [CrossRef]
- Liu, H.; Lv, T.; Zhu, C.; Su, X.; Zhu, Z. Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity. J. Mol. Catal. A Chem. 2015, 396, 136–142. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, X.; Zheng, L.; Wan, C. Fabrication of TiO2/MoS2 composite photocatalyst and its photocatalytic mechanism for degradation of methyl orange under visible light. Can. J. Chem. Eng. 2015, 93, 1594–1602. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, X.; Liu, M.; Luo, S.; Luo, Y.; Li, G. Fast photoelectro-reduction of Cr(VI) over MoS2/TiO2 nanotubes on Ti wire. J. Hazard. Mater. 2017, 329, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, B.; Xu, L.; Gao, H.; Sun, W.; Che, J. Multilayered MoS2 coated TiO2 hollow spheres for efficient photodegradation of phenol under visible light irradiation. Mater. Lett. 2016, 179, 42–46. [Google Scholar] [CrossRef]
- Yang, H.G.; Zeng, H.C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B. 2004, 108, 3492–3495. [Google Scholar] [CrossRef]
- Yan, C.; Rosei, F. Hollow micro/nanostructured materials prepared by ion exchange synthesis and their potential applications. New. J. Chem. 2014, 5, 1883–1904. [Google Scholar] [CrossRef]
- Bai, S.; Wang, L.; Chen, X.; Du, J.; Xiong, Y. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183. [Google Scholar] [CrossRef]
- Yuan, Y.; Ye, Z.; Lu, H.; Hu, B.; Li, Y.; Chen, D.; Zhong, J.; Yu, Z.; Zou, Z. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 2016, 6, 532–541. [Google Scholar] [CrossRef]
- Yasumitsu, T.; Sundo, K.; Moon Woo, C.; Masazumi, I. Tiocyanation of indoles. J. Heterocycl. Chem. 1978, 3, 425–427. [Google Scholar] [CrossRef]
- Mohammadi Ziarani, G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Adv. 2018, 8, 12069–12103. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Fujitsuka, M.; Majima, T. Electron transfer dynamics of quaternary sulfur semiconductor/MoS2 layer-on-layer for efficient visible-light H2 evolution. Appl. Catal. B 2018, 235, 9–16. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Zhang, Z. Recent development on MoS2-based photocatalysis: A review. J. Photochem. Photobiol. C Photochem. Rev. 2018, 35, 39–55. [Google Scholar] [CrossRef]
- Kang, X.; Song, X.Z.; Han, Y.; Cao, J.; Tan, Z. Defect-engineered TiO2 hollow spiny nanocubes for phenol degradation under visible light irradiation. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kermani, M.; Kakavandi, B.; Farzadkia, M.; Esrafili, A.; Jokandan, S.F.; Shahsavani, A. Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: Optimization, toxicity and degradation pathway studies. J. Clean. Prod. 2018, 192, 597–607. [Google Scholar] [CrossRef]
- Norman, M.; Żółtowska-Aksamitowska, S.; Zgoła-Grześkowiak, A.; Ehrlich, H.; Jesionowski, T. Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A. J. Hazard. Mater. 2018, 347, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, J.; Peng, T.; Fu, W.; Zan, L. MoS2-MoO3-x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons. Appl. Catal. B 2018, 228, 39–46. [Google Scholar] [CrossRef]
- Rozenfeld, S.; Teller, H.; Schechter, M.; Farber, R.; Krichevski, O.; Schechter, A.; Cahan, R. Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 2018, 123, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Holt-hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Li, H.P.; Cui, X.L.; Lin, Y. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 2801–2806. [Google Scholar] [CrossRef]
- Klapiszewski, Ł.; Królak, M.; Jesionowski, T. Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites. Cent. Eur. J. Chem. 2014, 12, 173–184. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Przybysz, M.; Zdarta, J.; Piasecki, A.; Paukszta, D.; Jesionowski, T. The sol-gel approach as a method of synthesis of xMgO·ySiO2 powder with defined physicochemical properties including crystalline structure. J. Sol-Gel Sci. Technol. 2014, 71, 501–513. [Google Scholar] [CrossRef]
- Baccile, N.; Fischer, A.; Julián-López, B.; Grosso, D.; Sanchez, C. Core-shell effects of functionalized oxide nanoparticles inside long-range meso-ordered spray-dried silica spheres. J. Sol-Gel Sci. Technol. 2008, 47, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Faustini, M.; Grosso, D.; Boissière, C.; Backov, R.; Sanchez, C. “Integrative sol-gel chemistry”: A nanofoundry for materials science. J. Sol-Gel Sci. Technol. 2014, 70, 216–226. [Google Scholar] [CrossRef]
- Dislich, H.; Hinz, P. History and principles of the sol-gel process, and some new multicomponent oxide coatings. J. Non-Cryst. Solids 1982, 48, 11–16. [Google Scholar] [CrossRef]
- Carter, B.; Norton, G. Sols, Gels, and Organic Chemistry. In Ceramic Materials Science and Engineering, 2nd ed.; Springer: New York, NY, USA, 2007; pp. 400–411. ISBN 9780387462707. [Google Scholar]
- Ciesielczyk, F.; Szczekocka, W.; Siwińska-Stefańska, K.; Piasecki, A.; Paukszta, D.; Jesionowski, T. Evaluation of the photocatalytic ability of a sol-gel-derived MgO-ZrO2 oxide material. Open Chem. 2017, 15, 7–18. [Google Scholar] [CrossRef]
- Letailleur, A.A.; Ribot, F.; Boissière, C.; Teisseire, J.; Barthel, E.; Desmazières, B.; Chemin, N.; Sanchez, C. Sol-gel derived hybrid thin films: The chemistry behind processing. Chem. Mater. 2011, 23, 5082–5089. [Google Scholar] [CrossRef]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic-inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 1989, 33, 223–315. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar] [CrossRef]
- Schottner, G. Hybrid sol-gel-derived polymers: Applications of multifunctional materials. Chem. Mater. 2001, 13, 3422–3435. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2002, 2, 717–720. [Google Scholar] [CrossRef]
- Siwinska-Stefanska, K.; Zdarta, J.; Paukszta, D.; Jesionowski, T. The influence of addition of a catalyst and cheating agent on the properties of titanium dioxide synthesized via the sol-gel method. J. Sol-Gel Sci. Technol. 2015, 75, 264–278. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Bartczak, P.; Zdarta, J.; Jesionowski, T. Active MgO-SiO2 hybrid material for organic dye removal: A mechanism and interaction study of the adsorption of C.I. Acid Blue 29 and C.I. Basic Blue 9. J. Environ. Manag. 2017, 204, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Vary, P.S.; Lin, C.-T. Anatase TiO2 Nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109, 8889–8898. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Kimizuka, N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc. 2003, 125, 6386–6387. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Lettmann, C.; Hildenbrand, K.; Kisch, H.; Macyk, W.; Maier, W.F. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal. B 2001, 32, 215–227. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B.F. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 2005, 127, 8659–8666. [Google Scholar] [CrossRef] [PubMed]
- Pierre, A.C. Introduction to Sol-Gel Processing, 1st ed.; Springer: New York, NY, USA, 1998; pp. 205–247. ISBN 9780792381211. [Google Scholar]
- Klein, L.; Aparicio, M.; Jitianu, A. Handbook of Sol-Gel Science and Technology, 2nd ed.; Springer: Cham, Switzerland, 2018; ISBN 9783319320991. [Google Scholar]
- Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K.P.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zhang, B.; Li, X.; Zhan, X.; Xu, X.; Xie, Z.; Jin, Z. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chem. 2018, 239, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.F.; Wu, W.W.; Li, M.M.; Song, X.; Lv, Y.; Zhang, T.T. A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens. Bioelectron. 2018, 99, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak-Radzimska, A.; Zdarta, J.; Jesionowski, T. Physicochemical and catalytic properties of acylase I from aspergillus melleus immobilized on amino- and carbonyl-grafted Stöber silica. Biotechnol. Prog. 2018, 34, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczak-Radzimska, A. Functionalized Stöber silica as a support in immobilization process of lipase from Candida rugosa. Physicochem. Probl. Miner. Process. 2017, 53, 878–892. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Particulate Sol and Gels. In Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press, INC.: New York, NY, USA, 1990; pp. 235–297. ISBN 9780080571034. [Google Scholar]
- Nogami, M. Semiconductor-doped sol-gel optics. In Sol-Gel Optics: Processing and Applications, 1st ed.; Klein, L.C., Ed.; Springer: New York, NY, USA, 1994; pp. 329–344. [Google Scholar]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017, 7, 8783. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H.H.M. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Appl. Catal. B Environ. 2018, 220, 171–181. [Google Scholar] [CrossRef]
- MiarAlipour, S.; Friedmann, D.; Scott, J.; Amal, R. TiO2/porous adsorbents: Recent advances and novel applications. J. Hazard. Mater. 2018, 341, 404–423. [Google Scholar] [CrossRef] [PubMed]
- Sopha, H.; Krbal, M.; Ng, S.; Prikryl, J.; Zazpe, R.; Yam, F.K.; Macak, J.M. Highly efficient photoelectrochemical and photocatalytic anodic TiO2 nanotube layers with additional TiO2 coating. Appl. Mater. Today 2017, 9, 104–110. [Google Scholar] [CrossRef]
- Kmentova, H.; Kment, S.; Wang, L.; Pausova, S.; Vaclavu, T.; Kuzel, R.; Han, H.; Hubicka, Z.; Zlamal, M.; Olejnicek, J.; et al. Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catal. Today 2017, 287, 130–136. [Google Scholar] [CrossRef]
- Shanmugam, M.; Bills, B.; Baroughi, M.F.; Galipeau, D. Electron transport in dye sensitized solar cells with TiO2/ZnO core- shell photoelectrode. In Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2016. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, Q.; Cui, S. TiO2 and ZnO water sol preparation by sol-gel method and application on polyester fabric of antistatic finishing. Adv. Mater. Res. 2011, 331, 270–274. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Tian, J.; Xu, X.; Dai, J.; Wang, X. Preparation and characterization of TiO2/ZnO composite coating on carbon steel surface and its anticorrosive behavior in seawater. Compos. Part B 2013, 46, 135–144. [Google Scholar] [CrossRef]
- Wang, L.; Fu, X.; Han, Y.; Chang, E.; Wu, H.; Wang, H.; Li, K.; Qi, X.; Wang, L.; Fu, X.; et al. Preparation, characterization, and photocatalytic activity of TiO2/ZnO nanocomposites. J. Nanomater. 2013, 2013, 321459. [Google Scholar] [CrossRef]
- Giannakopoulou, T.; Todorova, N.; Giannouri, M.; Yu, J.; Trapalis, C. Optical and photocatalytic properties of composite TiO2/ZnO thin films. Catal. Today 2014, 230, 174–180. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Huang, W.; Yang, C.; Huang, T.; Situ, Y.; Huang, H. Synthesis of porous ZnO/TiO2 thin films with superhydrophilicity and photocatalytic activity via a template-free sol-gel method. Surf. Coat. Technol. 2014, 258, 531–538. [Google Scholar] [CrossRef]
- Pournuroz, Z.; Khosravi, M.; Giahi, M.; Sohrabi, M. Compare removal of Reactive Red 195 and Blue 19 by nano TiO2-ZnO. Orient. J. Chem. 2015, 31, 2–6. [Google Scholar] [CrossRef]
- Al-Mayman, S.I.; Al-Johani, M.S.; Mokhtar, M.M.; Al-Zeghayer, Y.S.; Ramay, S.M.; Al-Awadi, A.S.; Soliman, M.A. TiO2-ZnO photocatalysts synthesized by sol-gel auto-ignition technique for hydrogen production. Int. J. Hydrogen Energy 2016, 42, 5016–5025. [Google Scholar] [CrossRef]
- Zulkiflee, N.S.; Hussin, R. Effect of temperature on TiO2/ZnO nanostructure thin films. Mater. Sci. Forum 2016, 840, 262–266. [Google Scholar] [CrossRef]
- Prasannalakshmi, P.; Shanmugam, N. Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater. Sci. Semicond. Process. 2017, 61, 114–124. [Google Scholar] [CrossRef]
- Al-Hazami, F.E.; Yakuphanoglu, F. Photoconducting and photovoltaic properties of ZnO:TiO2 composite/p-silicon heterojunction photodiode. Silicon 2017, 10, 781–787. [Google Scholar] [CrossRef]
- Armin, S.; Estekhraji, Z.; Amiri, S. Synthesis and characterization of anti-fungus, anti-corrosion and self-cleaning hybrid nanocomposite coatings based on sol-gel process. J. Inorg. Organomet. Polym. Mater. 2017, 27, 883–891. [Google Scholar] [CrossRef]
- Chamanzadeh, Z.; Noormohammadi, M.; Zahedifar, M. Enhanced photovoltaic performance of dye sensitized solar cell using TiO2 and ZnO nanoparticles on top of free standing TiO2 nanotube arrays. Mater. Sci. Semicond. Process. 2017, 61, 107–113. [Google Scholar] [CrossRef]
- Fatimah, I. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012003. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Guasaquillo, I.; Laub, D.; Kiwi, J. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol. A Chem. 2005, 174, 156–164. [Google Scholar] [CrossRef]
- Bozzi, A.; Yuranova, T.; Kiwi, J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A Chem. 2005, 172, 27–34. [Google Scholar] [CrossRef]
- Mihailović, D.; Šaponjić, Z.; Radoičić, M.; Radetić, T.; Jovančić, P.; Nedeljković, J.; Radetić, M. Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr. Polym. 2010, 79, 526–532. [Google Scholar] [CrossRef]
- Rashvand, M.; Ranjbar, Z.; Rastegar, S. Preserving anti-corrosion properties of epoxy based coatings imultaneously exposed to humidity and UV-radiation using nano zinc oxide. J. Electrochem. Soc. 2012, 159, 129–132. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Zhang, L.; Wang, J.; Chen, B. Corrosion resistance and mechanical properties of pulse electrodeposited Ni-TiO2 composite coating for sintered NdFeB magnet. J. Alloys Compd. 2009, 482, 339–344. [Google Scholar] [CrossRef]
- Yu, Z.; Di, H.; Ma, Y.; He, Y.; Liang, L.; Lv, L.; Ran, X.; Pan, Y.; Luo, Z. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surf. Coat. Technol. 2015, 276, 471–478. [Google Scholar] [CrossRef]
- You, X.; Chen, F.; Zhang, J. Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method. J. Sol-Gel Sci. Technol. 2005, 34, 181–187. [Google Scholar] [CrossRef]
- Chen, Y.; Dionysiou, D.D. Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol-gel method. J. Mol. Catal. A Chem. 2006, 244, 73–82. [Google Scholar] [CrossRef]
- Wu, N.L.; Lee, M.S.; Pon, Z.J.; Hsu, J.Z. Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution. J. Photochem. Photobiol. A Chem. 2004, 163, 277–280. [Google Scholar] [CrossRef]
- Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C. Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach. Environ. Pollut. 2002, 120, 415–422. [Google Scholar] [CrossRef]
- Karapati, S.; Giannakopoulou, T.; Todorova, N.; Boukos, N.; Antiohos, S.; Papageorgiou, D.; Chaniotakis, E.; Dimotikali, D.; Trapalis, C. TiO2 functionalization for efficient NOx removal in photoactive cement. Appl. Surf. Sci. 2014, 319, 29–36. [Google Scholar] [CrossRef]
- Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C. Composite TiO2/clays materials for photocatalytic NOx oxidation. Appl. Surf. Sci. 2014, 319, 113–120. [Google Scholar] [CrossRef]
- Thompson, S.; Shirtcliffe, N.J.; O’Keefe, E.S.; Appleton, S.; Perry, C.C. Synthesis of SrCoxTixFe(12-2x)O19 through sol-gel auto-ignition and its characterisation. J. Magn. Magn. Mater. 2005, 292, 100–107. [Google Scholar] [CrossRef]
- Sutka, A.; Mezinskis, G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 2012, 6, 128–141. [Google Scholar] [CrossRef]
- Hendi, A.A.; Yakuphanoglu, F. Graphene doped TiO2/p-silicon heterojunction photodiode. J. Alloys Compd. 2016, 665, 418–427. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.; Quan, X.; Chen, S.; Zhang, Y. Effective utilization of visible light (including λ > 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode. Environ. Sci. Technol. 2009, 43, 7849–7855. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Park, J.; Choi, T.; Jung, H.; Lee, K.H.; Im, S.; Kim, H. N-ZnO:N/p-Si nanowire photodiode prepared by atomic layer deposition. Appl. Phys. Lett. 2012, 100, 2010–2014. [Google Scholar] [CrossRef]
- Silva, C.G.; Faria, J.L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal. B Environ. 2010, 101, 81–89. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G.Q.; Cheng, H.M. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew. Chem. Int. Ed. 2008, 47, 4516–4520. [Google Scholar] [CrossRef] [PubMed]
- Hoang, S.; Berglund, S.P.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 2012, 134, 3659–3662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, F.J.; Chen, M.L.; Oh, W.C. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2-CNT catalysts. Ultrason. Sonochem. 2011, 18, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, B.; Zhang, X.; Zhang, Z.; Han, J.; Wu, J. Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase. Ultrason. Sonochem. 2005, 12, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alonso, M.D.; Tejedor-Tejedor, I.; Coronado, J.M.; Soria, J.; Anderson, M.A. Sol-gel preparation of TiO2-ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity. Thin Solid Films 2006, 502, 125–131. [Google Scholar] [CrossRef]
- Kraleva, E.; Saladino, M.L.; Matassa, R.; Caponetti, E.; Enzo, S.; Spojakina, A. Phase formation in mixed TiO2-ZrO2 oxides prepared by sol-gel method. J. Struct. Chem. 2011, 52, 330–339. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Fray, D.J. Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties. Sens. Actuators B Chem. 2011, 155, 568–576. [Google Scholar] [CrossRef]
- Naumenko, A.; Gnatiuk, I.; Smirnova, N.; Eremenko, A. Characterization of sol-gel derived TiO2/ZrO2 films and powders by Raman spectroscopy. Thin Solid Films 2012, 520, 4541–4546. [Google Scholar] [CrossRef]
- Karthika, S.; Prathibha, V.; Ann, M.K.A.; Viji, V.; Biju, P.R.; Unnikrishnan, N.V. Structural and spectroscopic studies of Sm3+/CdS nanocrystallites in sol-gel TiO2-ZrO2 matrix. J. Electron. Mater. 2014, 43, 447–451. [Google Scholar] [CrossRef]
- Fukumoto, T.; Yoshioka, T.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Development and gas permeation properties of microporous amorphous TiO2-ZrO2-organic composite membranes using chelating ligands. J. Membr. Sci. 2014, 461, 96–105. [Google Scholar] [CrossRef]
- Atanda, L.; Silahua, A.; Mukundan, S.; Shrotri, A.; Torres-Torres, G.; Beltramini, J. Catalytic behaviour of TiO2-ZrO2 binary oxide synthesized by sol-gel process for glucose conversion to 5-hydroxymethylfurfural. RSC Adv. 2015, 5, 80346–80352. [Google Scholar] [CrossRef]
- Khan, S.; Kim, J.; Sotto, A.; Van der Bruggen, B. Humic acid fouling in a submerged photocatalytic membrane reactor with binary TiO2-ZrO2 particles. J. Ind. Eng. Chem. 2015, 21, 779–786. [Google Scholar] [CrossRef]
- Zukalová, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M.K.; Liska, P.; Grätzel, M. Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 2005, 5, 1789–1792. [Google Scholar] [CrossRef] [PubMed]
- Marien, C.B.D.; Marchal, C.; Koch, A.; Robert, D.; Drogui, P. Sol-gel synthesis of TiO2 nanoparticles: Effect of Pluronic P123 on particle’s morphology and photocatalytic degradation of paraquat. Environ. Sci. Pollut. Res. 2017, 24, 12582–12588. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G.A. Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies. Adv. Funct. Mater. 2004, 14, 335–344. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Khataee, A.R.; Salehi, E.; Zinadini, S.; Monfared, H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012, 292, 19–29. [Google Scholar] [CrossRef]
- Ramachandra, M.; Abhishek, A.; Siddeshwar, P.; Bharathi, V. Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Procedia Mater. Sci. 2015, 10, 212–219. [Google Scholar] [CrossRef]
- Shojai, F.; Mäntylä, T.A. Structural stability of yttria doped zirconia membranes in acid and basic aqueous solutions. J. Eur. Ceram. Soc. 2001, 21, 37–44. [Google Scholar] [CrossRef]
- Puhlfürß, P.; Voigt, A.; Weber, R.; Morbé, M. Microporous TiO2 membranes with a cut off <500 Da. J. Membr. Sci. 2000, 174, 123–133. [Google Scholar] [CrossRef]
- Fan, J.; Ohya, H.; Suga, T.; Ohashi, H.; Yamashita, K.; Tsuchiya, S.; Aihara, M.; Takeuchi, T.; Negishi, Y. High flux zirconia composite membrane for hydrogen separation at elevated temperature. J. Membr. Sci. 2000, 170, 113–125. [Google Scholar] [CrossRef]
- Lu, C.; Chen, Z. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sens. Actuators B Chem. 2009, 140, 109–115. [Google Scholar] [CrossRef]
- Mather, G.C.; Marques, F.M.B.; Frade, J.R. Detection mechanism of TiO2 -based ceramic H2 sensors. J. Eur. Ceram. Soc. 1999, 19, 887–891. [Google Scholar] [CrossRef]
- Tang, H.; Prasad, K.; Sanjines, R.; Levy, F. TiO2 anatase thin-films as gas sensors. Sens. Actuators B-Chem. 1995, 26, 71–75. [Google Scholar] [CrossRef]
- Kuster, B.F.M. 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch-Stärke 1990, 42, 314–321. [Google Scholar] [CrossRef]
- Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011, 13, 754–793. [Google Scholar] [CrossRef]
- Ho, D.P.; Vigneswaran, S.; Ngo, H.H. Photocatalysis-membrane hybrid system for organic removal from biologically treated sewage effluent. Sep. Purif. Technol. 2009, 68, 145–152. [Google Scholar] [CrossRef]
- Yang, N.; Wen, X.; Waite, T.D.; Wang, X.; Huang, X. Natural organic matter fouling of microfiltration membranes: Prediction of constant flux behavior from constant pressure materials properties determination. J. Membr. Sci. 2011, 366, 192–202. [Google Scholar] [CrossRef]
- Katrib, A.; Benadda, A.; Sobczak, J.W.; Maire, G. XPS and catalytic properties of the bifunctional supported MoO2(Hx)ac on TiO2 for the hydroisomerization reactions of hexanes and 1-hexene. Appl. Catal. A Gen. 2003, 242, 31–40. [Google Scholar] [CrossRef]
- Fu, J.; Ji, M.; Wang, Z.; Jin, L.; An, D. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. J. Hazard. Mater. 2006, 131, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Zeleny, J. Instability of electrified liquid surfaces. Phys. Rev. 1917, 10, 1–6. [Google Scholar] [CrossRef]
- Dole, M.; Hines, R.L.; Mack, L.L.; Mobley, R.C.; Ferguson, L.D.; Alice, M.B. Gas phase macroions. Macromolecules 1968, 1, 96–97. [Google Scholar] [CrossRef]
- Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. Nanostructured ceramics by electrospinning. J. Appl. Phys. 2007, 102, 111101. [Google Scholar] [CrossRef]
- Dai, Y.; Cobley, C.M.; Zeng, J.; Sun, Y.; Xia, Y. Synthesis of anatase TiO2 nanocrystals with exposed (001) facets. Nano Lett. 2009, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Formo, E.; Lee, E.; Campbell, D.; Xia, Y. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett. 2008, 8, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Yang, Y.; Kang, F. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, D.D.; Guo, P.; Leckie, J.O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007, 7, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, C.; Wei, Y. One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Small 2009, 5, 2349–2370. [Google Scholar] [CrossRef] [PubMed]
- Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221. [Google Scholar] [CrossRef]
- Anselme, K.; Davidson, P.; Popa, A.M.; Giazzon, M.; Liley, M.; Ploux, L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010, 6, 3824–3846. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today 2010, 13, 16–27. [Google Scholar] [CrossRef]
- Agarwal, S.; Greiner, A.; Wendorff, J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963–991. [Google Scholar] [CrossRef]
- Long, Y.Z.; Li, M.M.; Gu, C.; Wan, M.; Duvail, J.L.; Liu, Z.; Fan, Z. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442. [Google Scholar] [CrossRef]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Spasova, M.; Mincheva, R.; Paneva, D.; Manolova, N.; Rashkov, I. Perspectives on: Criteria for complex evaluation of the morphology and alignment of electrospun polymer nanofibers. J. Bioact. Compat. Polym. 2006, 21, 465–479. [Google Scholar] [CrossRef]
- Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223. [Google Scholar] [CrossRef]
- Fong, H.; Liu, W.; Wang, C.S.; Vaia, R.A. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 2001, 43, 775–780. [Google Scholar] [CrossRef]
- Mitarai, T.; Shander, A.; Tight, M.; Fabrics, N.; Martin, F.N.; English, J.T. An introduction to electrospinning and nanofibres. J. Cardiothorac. Vasc. Anesth. 2013, 27, 1–2. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, W.; Strout, T.; Schempf, A.; Zhang, H.; Li, B.; Cui, J.; Lei, Y. Ammonia gas sensor using polypyrrole-coated TiO2/ZnO nanofibers. Electroanalysis 2009, 21, 1432–1438. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, S.W.; Lee, J.W.; Lee, C.; Kim, S.S. Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J. Am. Ceram. Soc. 2009, 92, 2551–2554. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yang, Y.; Li, X.; Li, L.J.; Wang, C. Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chin. Chem. Lett. 2010, 21, 1119–1123. [Google Scholar] [CrossRef]
- Liu, R.; Ye, H.; Xiong, X.; Liu, H. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater. Chem. Phys. 2010, 121, 432–439. [Google Scholar] [CrossRef]
- Kanjwal, M.A.; Barakat, N.A.M.; Sheikh, F.A.; Park, S.J.; Kim, H.Y. Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques. Macromol. Res. 2010, 18, 233–240. [Google Scholar] [CrossRef]
- Li, J.; Yan, L.; Wang, Y.; Kang, Y.; Wang, C.; Yang, S. Fabrication of TiO2/ZnO composite nanofibers with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 2016, 27, 7834–7838. [Google Scholar] [CrossRef]
- Araújo, E.S.; Libardi, J.; Faia, P.M.; de Oliveira, H.P. Humidity-sensing properties of hierarchical TiO2:ZnO composite grown on electrospun fibers. J. Mater. Sci. Mater. Electron. 2017, 28, 1–9. [Google Scholar] [CrossRef]
- Karunagaran, B.; Uthirakumar, P.; Chung, S.J.; Velumani, S.; Suh, E.K. TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 2007, 58, 680–684. [Google Scholar] [CrossRef]
- Shavisi, Y.; Sharifnia, S.; Hosseini, S.N.; Khadivi, M.A. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J. Ind. Eng. Chem. 2014, 20, 278–283. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Characteristics of ammonia adsorption on activated alumina. J. Chem. Eng. Data 2010, 55, 5587–5593. [Google Scholar] [CrossRef]
- Yuzawa, H.; Mori, T.; Itoh, H.; Yoshida, H. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst. J. Phys. Chem. C 2012, 116, 4126–4136. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, Z.; Chen, Y.; Zhang, J.; Wang, Q.; Huang, F.; Wei, Q. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2016, 494, 248–255. [Google Scholar] [CrossRef]
- Nagaraja, R.; Kottam, N.; Girija, C.R.; Nagabhushana, B.M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215–216, 91–97. [Google Scholar] [CrossRef]
- Kornbrust, D.; Barfknecht, T. Testing of 24 food, drug, cosmetic, and fabric dyes in the in vitro and the in vivo/in vitro rat hepatocyte primary culture/DNA repair assays. Environ. Mutagen 1985, 7, 101–120. [Google Scholar] [CrossRef] [PubMed]
- Snawder, J.E.; Lipscomb, J.C. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: Correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul. Toxicol. Pharm. 2000, 32, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Mirsalis, J.C.; Tyson, C.K.; Steinmetz, K.L.; Loh, E.K.; Hamilton, C.M.; Bakke, J.P.; Spalding, J.W. Measurement of unscheduled DNA synthesis and S-phase synthesis in rodent hepatocytes following in vivo treatment: Testing of 24 compounds. Environ. Mol. Mutagen 1989, 14, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zou, B.; Gao, W.; Liu, Q.; Wang, Z.; Guo, Y.; Wang, X.; Liu, Y. Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surf. A Physicochem. Eng. Asp. 2014, 446, 1–7. [Google Scholar] [CrossRef]
- Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A. Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J. Environ. Manag. 2007, 85, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, Q.; Li, F.; Zhao, S. Microstructure of SiO2/TiO2 hybrid electrospun nanofibers and their application in dye degradation. Res. Chem. Intermed. 2016, 42, 7017–7029. [Google Scholar] [CrossRef]
- Hou, C.; Jiao, T.; Xing, R.; Chen, Y.; Zhou, J.; Zhang, L. Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment. J. Taiwan Inst. Chem. Eng. 2017, 78, 118–126. [Google Scholar] [CrossRef]
- Doh, S.J.; Kim, C.; Lee, S.G.; Lee, S.J.; Kim, H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. J. Hazard. Mater. 2008, 154, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Faia, P.M.; Furtado, C.S. Effect of composition on electrical response to humidity of TiO2:ZnO sensors investigated by impedance spectroscopy. Sens. Actuators B Chem. 2013, 181, 720–729. [Google Scholar] [CrossRef]
- Su, M.; Wang, J.; Du, H.; Yao, P.; Zheng, Y.; Li, X. Characterization and humidity sensitivity of electrospun ZrO2:TiO2 hetero-nanofibers with double jets. Sens. Actuators B Chem. 2012, 161, 1038–1045. [Google Scholar] [CrossRef]
- Lee, C.; Park, J.H.; Jeon, Y.; Park, J.I.; Einaga, H.; Truong, Y.B.; Kyratzis, I.L.; Mochida, I.; Choi, J.; Shul, Y.G. Phosphate modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high temperature PEM fuel cells. Energy Fuels 2017, 31, 4–11. [Google Scholar] [CrossRef]
- Boaretti, C.; Pasquini, L.; Sood, R.; Giancola, S.; Donnadio, A.; Roso, M.; Modesti, M.; Cavaliere, S. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J. Membr. Sci. 2018, 545, 66–74. [Google Scholar] [CrossRef]
- Xiao, P.; Li, J.; Tang, H.; Wang, Z.; Pan, M. Physically stable and high performance Aquivion/ePTFE composite membrane for high temperature fuel cell application. J. Membr. Sci. 2013, 442, 65–71. [Google Scholar] [CrossRef]
- Marrony, M.; Beretta, D.; Ginocchio, S.; Nedellec, Y.; Subianto, S.; Jones, D.J. Lifetime prediction approach applied to the aquivionTM short side chain perfluorosulfonic acid ionomer membrane for intermediate temperature proton exchange membrane fuel cell application. Fuel Cells 2013, 13, 1146–1154. [Google Scholar] [CrossRef]
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, ethanol, deionized water | hydrothermal treatment: 120, 180, 200 °C, reaction time: 1, 12, 24, 48 h, drying: 60 °C, calcination: 350 °C for 1 h | anatase crystal structure, spherical shaped particles with a tendency to agglomerate and particle sizes in the range 413–527 nm | [8] |
TiO2 microspheres (P25 Degussa), Zn(NO3)2·6H2O, hexamethylenetetramine, distilled water | hydrothermal treatment: 100 °C, reaction time: 1–5 h, drying: 60 °C | crystal structure of anatase and wurtzite, spherical shaped particles coated with nanospindles, particle diameter 1.5–2 μm, BET surface area 122.2–34.8 m2/g (reduction of specific surface area with increase of ZnO fraction) | [56,57] |
Ti(SO4)2, ZnCl2, NH3·H2O, cetyltrimethylammonium bromide, distilled water | hydrothermal treatment: 100 °C, reaction time: 4 h, drying: 60 °C | crystal structure of TiO, Ti3O5 and ZnO, particles with a smooth surface with a tendency to agglomerate | [58] |
Ti[OCH(CH3)2]4, Zn(NO3)2·6H2O, NaOH, distilled water, poly(vinyl alcohol) | hydrothermal treatment: 220 °C, reaction time: 5 h, drying: 80 °C for 2 h | crystal structure of anatase and wurtzite, particles with spherical and cubic shapes with a tendency to agglomerate, particle diameter 30 nm | [59] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, acetic acid, ethylene glycol, deionized water | hydrothermal treatment: 180, 190, 200 °C, reaction time: 8, 12, 15, 24 h, drying: 60 °C | crystal structure of anatase and wurtzite, particle size distribution in the range 25–100 nm with average particle diameter 64 nm, BET surface area 97 m2/g and 206 m2/g for systems obtained at 180 and 200 °C respectively | [60] |
Ti(SO4)2, Zn(NO3)2·6H2O, NH4F, CO(NH2)2, ethanol, distilled water | hydrothermal treatment: 120-180 °C, reaction time: 2–24 h drying: 80 °C for 24 h | crystal structure anatase and wurtzite, spherical particles with a tendency to agglomerate, nanoparticles of diameter 0.5–2 µm | [61] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, NH3·H2O, ethylene glycol | hydrothermal treatment: 220 °C, reaction time: 5 h, drying: 60 °C | crystal structure of anatase and wurtzite, particles with a tendency to agglomerate, porous microstructure | [62] |
TiCl4, ZnCl2, urea, ethanol, distilled water | hydrothermal treatment: 180 °C, reaction time: 16 h, calcination: 450 °C for 2 h | crystal structure of anatase and wurtzite, particles taking the shape of nanorods with a tendency to agglomerate | [63] |
TiCl4, Zn(NO3)2·6H2O, NH3*H2O, ethanol, distilled water | hydrothermal treatment: 150 °C, reaction time: 1 h, freeze-drying: −55 °C in vacuum, calcination: 600, 700, 900 °C for 1 h | crystal structure of rutile, wurtzite, Zn2TiO3O8, spherical particles with a tendency to agglomerate, particle diameters in the range 140–270 μm | [64] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, sodium hydroxide, deionized water | microwave treatment: 180 °C for 5 min, frequency: 2.45 GHz, calcination: 500, 600 °C | crystal structure of anatase, wurtzite and zinc titanates (ZnTiO3, Zn2Ti3O4), spherical and hexagonal particles with a tendency to agglomerate, mean particle size 36 and 31 nm for samples calcined at 500 and 600 °C | [65] |
Ti(OC4H9)4, Zn(CH3COO)2, deionized water | microwave treatment: 80 °C for 30 min, drying: 80 °C | crystal structure of anatase and wurtzite, band gap energy 3.15 eV, spherical shaped particles with a tendency to agglomerate, BET surface area 290 m2/g, pore diameter 3.4 nm, pore volume 0.32 cm3/g | [66] |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
TiO2, ZrOCl2·8H2O, NaOH, distilled water | hydrothermal treatment: 180 °C, reaction time: 48 h, drying: 60 °C, calcination: 500 °C for 3 h | crystal structure of TiO2 and tetragonal ZrO2, nanorod particles up to 5 μm in length | [82] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, propan-2-ol | hydrothermal treatment: 240 °C, reaction time: 24 h, drying: 100 °C for 2 h, calcination: 450 °C for 4 h | crystal structure of anatase, rutile and tetragonal ZrO2, spherical particles with a tendency to agglomerate | [83] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, 1,3-butanediol, ethylene glycol | hydrothermal treatment: 300 °C, reaction time: 2 h, drying: 60 °C, calcination: 500 and 800 °C | crystal structure of tetragonal ZrO2, spherical particles with diameter up to 1 μm | [84] |
TiOSO4, Zr(SO4)2, distilled water | hydrothermal treatment: 200, 240 °C, reaction time: 24 h, drying: 60 °C, calcination: 400–1000 °C for 1 h | anatase crystal structure (for systems obtained at a molar ratio of TiO2 > 50%) and monocrystalline ZrO2 (for all synthesized systems), spherical particles with diameter 13 nm | [85] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, Zn(NO3)2·6H2O, propan-2-ol, nitric acid | hydrothermal treatment: 240 °C, reaction time: 24 h, drying: 100 °C for 2 h, calcination: 450 °C for 4 h | crystal structure of anatase, rutile and monolithic ZrO2, average crystallite size 17.4 nm, band gap for TiO2-ZrO2 = 2.15 eV | [86] |
Ti[OCH(CH3)2]4, ZrOCl2·8H2O, poly(methyl methacrylate), ethanol | hydrothermal treatment: 160 °C, reaction time: 10 h, drying: 100 °C, calcination: 800 °C | crystal structure of anatase and monolithic ZrO2 (for a calcined system), particles with a structure of hollow microspheres, diameters in the range 0.7–2 μm, BET surface area 224.6 m2/g | [87] |
TiCi4, ZrOCl2·8H2O, NH3·H2O, distilled water | hydrothermal treatment: 220 °C, reaction time: 4 h, drying: 120 °C, calcination: 500 °C for 10 h | amorphous structure, high thermal stability (10% mass loss), BET surface area 209 m2/g | [88] |
commercial Ti, ZrOCl2·8H2O, NH3·H2O, H2O2, HNO3, lactic acid | hydrothermal treatment: 180 °C, reaction time: 12 h, drying: 50 °C for 12 h | crystal structure of anatase and ZrO2, spherical and spindle shaped particles | [89] |
Ti[OCH(CH3)2]4, ZrCl2, HNO3, methanol | hydrothermal treatment: 260 °C, reaction time: 12 h, drying: 80 °C for 24 h | crystal structure of anatase, BET surface area 40.6 m2/g, pore volume 0.183 cm3/g, pore diameter 5.7 nm | [90] |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
TiCl4, Na2MoO4·2H2O, thioacetamide, deionized water | hydrothermal treatment: 240 °C, reaction time: 24 h, drying: 60 °C | crystal structure of TiO2 (anatase) and MoS2, layered structure of MoS2 particles, molybdenum disulfide particles coated with TiO2 nanoparticles (3–5 nm) | [33] |
TiCl4, (NH4)6Mo7O24·4H2O, thiourea, ethanol, deionized water | hydrothermal treatment: 220 °C, reaction time: 24 h, drying: 60 °C for 12 h, calcination: 500 °C for 4 h | crystal structure characteristic for TiO2 (anatase) and MoS2, 8% loss of mass when heated to 700 °C, particles in the form of a single sheet, 20 nm TiO2 particles evenly distributed on the surface of MoS2 | [34] |
Ti(OC4H9)4, MoS2, ethylene glycol, HCl, deionized water | hydrothermal treatment: 180 °C, reaction time: 12 h | crystal structure of anatase and 2H-MoS2, BET surface area = 48.2 m2/g, MoS2 nanoparticles coated with TiO2 particles | [96] |
Ti(OC4H9)4, Na2MoO4·2H2O, thiourea, HF, deionized water | preparation of TiO2 hydrothermal treatment: 180 °C, reaction time: 24 h preparation of TiO2-MoS2: hydrothermal treatment: 200 °C, reaction time: 24 h, drying: 105 °C for 24 h, calcination: 400 °C for 4 h | crystal structure of TiO2 (anatase) and MoS2 (for the molar ratio Mo:Ti = 7.5%), BET surface area = 86, 87, 98, 92 m2/g for systems obtained with molar ratios Mo:Ti = 2.5, 5, 7.5% respectively, TiO2 coated with MoS2 particles | [97] |
TiO2-P25 (Degussa), Na2MoO4·2H2O, thiourea, HCl, NaOH, deionized water | preparation of TiO2: hydrothermal treatment: 180 °C, reaction time: 24 h, preparation of TiO2-MoS2: hydrothermal treatment: 180 °C, reaction time: 24 h, drying: 80 °C for 12 h | crystal structure characteristic for TiO2 and MoS2, MoS2 particles in the form of nanofibres with embedded spherical TiO2 agglomerates | [98] |
TiCl4, MoS2, ethanol, glycerol, sodium hexametaphosphate | obtaining of TiO2: sonication preparation of TiO2-MoS2: hydrothermal treatment: 140 °C, reaction time: 3 h | crystal structure of TiO2 (anatase), M3O8·2H2O (ilsemanite) and 3R-MoS2 (molybdenite), particle diameter 46 nm, MoS2 particles coated with spherical TiO2 particles, 23% mass loss of the TiO2-MoS2 hybrid when heated to 900 °C | [99] |
Ti, Na2MoO4·2H2O, thioacetamide, deionized water, acetone, ethanol | preparation of TiO2: anodic process on steel substrates in DSMO/HF electrolyte, calcination: 500 °C for 4 h preparation of TiO2-MoS2: hydrothermal treatment: 220 °C, reaction time: 24 h, drying: 80 °C for 12 h | crystal structure of anatase and hexagonal MoS2, particles in the form of nanotubes coated with MoS2 | [100] |
TiF4, Na2MoO4·2H2O, thioacetamide, deionized water | preparation of TiO2: hydrothermal treatment: 140 °C, reaction time: 1.5 h preparation of TiO2-MoS2: hydrothermal treatment: 220 °C, reaction time: 24 h, drying: 60 °C for 12 h | crystal structure of TiO2 (anatase) and rhombohedral MoS2, disappearance of anatase with an increase in the fraction of MoS2, TiO2 spheres covered with MoS2 nanoparticles | [101,102,103] |
Ti(OC4H9)4, MoS2, H2SO4, N,N-dimethylformamide, ethanol, deionized water, | hydrothermal treatment: 200 °C, reaction time: 20 h | crystal structure of TiO2 (anatase) and MoS2, dense covering of molybdenum disulfide particles with titanium dioxide particles of 10 nm diameter | [104] |
Ti(OC4H9)4, Na2MoO4·2H2O, thioacetamide, HF | hydrothermal treatment: 200 °C, reaction time: 24 h, drying: 80 °C for 12 h, calcination: 400 °C for 1 h | crystal structure of TiO2 (anatase) and MoS2, number of MoS2 layers in the range 6–9, TiO2 particles applied to MoS2 nanoparticles | [105] |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
TiCl4, Zn(CH3COO)2·2H2O, ZnCl2, benzyl alcohol, propan-2-ol, deionized water | ZnO sol: Zn(CH3COO)2·2H2O (sample A) or ZnCl2 (sample B), propan-2-ol TiO2-ZnO system: ZnO sol, TiCl4 mixed in the ratio TiO2:ZnO = 9:1 (sample A); 5:5 (sample B) calcination: 500 °C for 6 h (sample A); 200; 400; 550; 600 °C for 2 h (sample B) | crystal structure of anatase (sample A) and anatase, rutile and zinc titanate (sample B), spherical shaped particles with agglomeration | [1] |
TiO2, Zn(CH3COO)2·2H2O, diethylamine, propan-2-ol, deionized water | TiO2 sol: TiO2 compact layer was deposited on an ITO (indium tin oxide) coated glass substrates by RF-sputtering technique with RF-power of 150 W, calcination: 450 °C for 30 min ZnO sol: Zn(CH3COO)2·2H2O, propan-2-ol TiO2-ZnO system: the TiO2 layer was immersed in ZnO sol solution | bands on XPS spectra—Ti2s, Ti3s, Ti2p, Zn2p, Zn3p, Zn3s, O1s, spherical particles, TiO2 particles coated with ZnO (core-shell) | [152] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, ethylamine, glacial acetic acid, ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, ethanol, acetic acid ZnO sol: Zn(CH3COO)2·2H2O, ethanol, ethylamine, acetic acid TiO2-ZnO system: the sols of the respective oxides were mixed at molar ratio TiO2:ZnO = 7:3, 5:5, 3:7 | antistatic properties, homogeneous surface of polyester material coated with a TiO2-ZnO oxide system | [153] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, glacial acetic acid, diethylamine, ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, ethanol, acetic acid ZnO sol: Zn(CH3COO)2·2H2O, ethanol TiO2-ZnO system: obtained sols were mixed at molar ratio TiO2:ZnO = 1:0; 3:1; 1:3; 0:1, the obtained materials were deposited on carbon steel by immersion in solution, drying: 70 °C for 10 h calcination: 350, 500 °C for 2 h | crystal structure of Fe, TiO2, Fe3O4, ZnFe2O4, morphology – rough surfaces with numerous cracks, EDX spectrum showed bands characteristic for Ti, O, Fe, Zn | [154] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, hydrochloric acid, anhydrous ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, ethanol, HCl ZnO sol: Zn(CH3COO)2·2H2O, ethanol, deionized water TiO2-ZnO system: materials obtained at molar ratio ZnO:TiO2 = 0.1:0.15; 0.2:0.25; 0.3:0.35, calcination: 450; 480; 500; 550; 600 °C for 1; 1.5; 2; 2.5; 3 h | crystal structure of anatase and wurtzite, particles with spherical shape with a tendency to agglomerate, BET surface area 76.258 m2/g, pore volume 0.0361 cm3/g, pore diameter 6.6 nm | [155] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, nitric acid, ethylene glycol, glycerol, trimethylamine (TEA), anhydrous ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, nitric acid, ethanol ZnO sol: Zn(CH3COO)2·2H2O, ethylene glycol, glycerol, TEA, ethanol TiO2-ZnO system: obtained sols were mixed at molar ratio TiO2:ZnO = 100:0, 75:25, 50:50, 25:75, 0:100, calcination: 500 °C for 1 h | anatase crystal structure (TiO2:ZnO = 100:0, 75:25), amorphous structure (TiO2:ZnO = 50:50, 25:75), wurtzite structure (TiO2:ZnO = 0:100), XPS shows the presence of Ti2p, Zn2p, O1s bands | [156] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, nitric acid, acetic acid, diethylamine, acetylacetone, anhydrous ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, ethanol, acetylacetone, acetic acid, diethylamine ZnO sol: Zn(CH3COO)2·2H2O, ethanol, diethylamine TiO2-ZnO system: obtained sols were mixed at molar ratio TiO2:ZnO = 90:10, 80:20, 70:30, 60:40, calcination: 500 °C for 30 min | anatase crystal structure (TiO2:ZnO = 90:10, 80:20), amorphous structure (TiO2:ZnO = 70:30, 60:40), spherical shaped particles and porous structure, XPS shows bands characteristic for Ti2p, Zn2p, O1s | [157] |
Ti[OCH(CH3)2]4, Zn(NO3)2·6H2O, glacial acetic acid, ethanol, deionized water | TiO2 sol: Ti(OC4H9)4, ethanol ZnO sol: Zn(NO3)2·6H2O, ethanol, glacial acetic acid TiO2-ZnO: obtained sols were mixed at molar ratio TiO2:ZnO = 10:3, calcination: 400 °C for 2 h | crystal structure of anatase and zincite, particles with spherical shape and a tendency to agglomerate, EDX shows the presence of bands derived from Ti, Zn, O | [158] |
Ti(OC4H9)4, Zn(NO3)2·6H2O, citric acid, deionized water | TiO2-ZnO system: sol-gel auto-ignition method, citric acid (catalyst) Ti(OC4H9)4, Zn(NO3)2·6H2O was heated to a temperature of 300 °C, auto-ignition, calcination: 500 °C for 5 h | crystal structure of anatase, BET surface area = 52, 63.4, 69.9, 64, 36.6 m2/g respectively for systems prepared with a ZnO mass fraction of 1, 5, 10, 12, 30%, particles of irregular shape with a tendency to agglomerate, EDX shows bands characteristic for Ti, O, Zn | [159] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, acetic acid, diethylamine, butanol, propan-2-ol, deionized water | TiO2 sol: Ti(OC4H9)4, butanol, acetic acid ZnO sol: Zn(CH3COO)2·2H2O, propan-2-ol, diethylamine, deionized water TiO2-ZnO system: the glass plate was covered with a layer of TiO2 sol, calcination: 400 °C for 2 h, covering by ZnO layer, calcination: 500, 600 °C for 2 h | crystal structure of anatase and wurtzite, increase of surface roughness with increasing calcination temperature | [160] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, sodium hydroxide, propan-2ol, deionized water | sol of TiO2: Ti(OC4H9)4, propan-2-ol sol of ZnO: Zn(CH3COO)2·2H2O, sodium hydroxide (0.5 M), deionized water TiO2-ZnO system: obtained sols was mixed at molar ratio TiO2:ZnO = 0.5:0.25; 1:0.5; 1.5:0.75; 2:1, are designated respectively as TZO1 TZO2, TZO3 and TZO4, calcination: 550 °C for 4 h | crystalline structure of anatase and wurtzite, Raman spectroscopy - bands characteristic for TiO2 and ZnO, spherical shaped particles and rods with tendency to agglomerate, EDX—strands derived from Ti, Zn, O, BET surface area equal to 74.7, 32.2, 12.58. 8.82 m2/g respectively for samples TZO1 TZO2, TZO3, and TZO4 | [161] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, nitric acid, ethylene glycol, ethanol, deionized water | TiO2 sol: Ti(OC4′H9)4, ethanol, nitric acid ZnO sol: Zn(CH3COO)2·2H2O, ethylene glycol TiO2-ZnO system: TiO2 and ZnO sols were mixed at molar ratio TiO2:ZnO = 2:1, calcination: 450 °C for 1 h | particles of spherical shape with no tendency to agglomerate, EDX showed characteristic bands for Ti, Zn, O, energy band gap 3.41 eV | [162] |
Ti(OC4H9)4, Zn(CH3COO)2·2H2O, nitric acid, diethylamine, acetylacetone, propan-2-ol, deionized water | TiO2 sol: Ti(OC4H9)4, acetylacetone, propan-2-ol, nitric acid ZnO sol: Zn(CH3COO)2·2H2O, propan-2-ol, diethylamine TiO2-ZnO system: obtained sols were mixed in equimolar ratio | irregular shaped particles, EDX showed bands characteristic for Ti, Zn, O | [163] |
TiCl4, Zn(CH3COO)2·2H2O, ammonium fluoride, acetonitrile, butanol, acetone, diethylamine, ethanol, deionized water | TiO2: electrode method ZnO sol: Zn(CH3COO)2·2H2O, ethanol diethylamine TiO2-ZnO system: TiO2 (anodic method) was immersed in a solution of TiCl4, calcination: 450 °C for 15 min, TiO2 was covered by ZnO layer, drying: 180 °C for 10 min, calcination: 500 °C for 1 h | particles with shapes similar to nanotubes and spherical, EDX showed characteristic bands for Ti, Zn, O | [164] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, acetic acid, propan-2-ol | TiO2-ZnO system: to Ti[OCH(CH3)2]4 was added Zn(CH3COO)2·2H2O dissolved in propan-2-ol (molar ratio Ti:Zn = 5:1), calcination: 400 °C for 4 h | crystal structure of anatase and wurtzite, particles with a spherical shape with agglomeration, BET surface area = 91 m2/g, pore size 1.49 nm, pore volume 0.343 cm3/g | [165] |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
Ti(OC4H9)4, ZrOCl2·8H2O, nitric acid, polyethylene glycol (PEG), (PEO)20(PPO)70(PEO)20 (Pluronic P123, MW = 5800, Aldrich), ethanol, deionized water | TiO2-ZrO2 oxide system: single-step synthesis, mixed with Ti(C4H9)4: PEG:P123 with ZrOCl2·8H2O (molar ratio Ti:Zr = 1:0.1), aging: 24 h, calcination: 800 °C for 5 h | crystal structure of anatase, tetragonal zirconia rutile, BET surface area = 148.9; 138.5; 136.9 m2/g for TiO2-ZrO2(P123 + PEG); TiO2-ZrO2(PEG); TiO2-ZrO2(P123) | [29] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, nitric acid, deionized water | TiO2-ZrO2 oxide systems: M1 and M2 M1: Ti0.9Zr0.1O2, hydrolysis of precursors in an aqueous environment M2: Ti0.9Zr0.1O2, polymerization of precursors in propan-2-ol drying: 100 °C, calcination: 350 °C for 2 h | crystal structure of anatase and brookite, Raman spectroscopy showed anatase-specific bands, BET surface area = 313 m2/g (M1); 269 m2/g (M2) | [188] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, ammonia water, propan-2-ol, distilled water | TiO2 sol: Ti[OCH(CH3)2]4, propan-2-ol, ammonia water ZrO2 sol: Zr[OCH(CH3)2]4, propan-2-ol, ammonia water TiO2-ZrO2 oxide systems: sol was mixed with ZrO2 in a molar fraction of 3%, 6%, 13%, 37%, drying: 100 °C for 24 h, calcination: 550, 700 °C for 5 h | crystal structure of anatase and rutile, spherical particle shape with agglomeration, BET surface area = 26, 37, 40, 172 m2/g for materials calcined at 550 °C and 26, 29, 30, 36 m2/g for materials calcined at 700 °C, for systems with ZrO2 molar fractions 3%, 6%, 13%, 37% respectively | [189] |
Ti[OCH(CH3)2]4, Zr(CH3COO)2·2H2O, hydrochloric acid, hydroxypropylcellulose, deionized water | ZrO2 sol: Zr(CH3COO)2·2H2O, hydroxypropylcellulose TiO2 sol: Ti[OCH(CH3)2]4, HCl, water TiO2-ZrO2: the sol was mixed maintaining the ratio Ti:Zr = 0.5:0.5, drying: 150 °C for 1 h, calcination: 300, 500, 700, 900 °C for 1 h | crystal structure of anatase and zirconium dioxide, crystallite size 5.8 and 8.5 nm for calcination temperatures of 500 °C and 900 °C, particles with a spherical shape with a tendency to agglomerate | [190] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, poly(ethylene oxide), (PEO)20(PPO)70(PEO)20 (Pluronic P123, BASF), acetylacetone, hydrochloric acid, deionized water | TiO2 sol: Ti[OCH(CH3)2]4, HCl, water ZrO2 sol: Zr[OCH(CH3)2]4, HCl, water TiO2-ZrO2: the sol was mixed, aging: 12 h, calcination: 400, 500 °C for 2 h | crystal structure of anatase, incorporation of zirconium dioxide into titania network forming Ti1−xZrxO2 with anatase crystal structure, Raman spectroscopy showed anatase and ZrO2 characteristic bands, spherical shaped particles densely packed with diameter 10–15 nm | [191] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, lauramine hydrochloride, acetyl acetone, diethylamine, deionized water | TiO2-ZrO2 oxide system: single-step synthesis, mixed Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4 acetylacetone and laurylamine, aging: 7 days, calcination: 500–900 °C | crystal structure of anatase, rutile and tetragonal zirconia, particles with spherical shape with agglomeration | [27] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, nitric acid, ethanol, deionized water | TiO2-ZrO2: one-stage synthesis, hydrolysis of Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4 in ethanol:water | Fourier-transform infrared spectroscopy (FTIR) spectroscopy showed bands characteristic for TiO2 and ZrO2, distances between planes 3.533 Å | [192] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, diethylamine (DEA), isoeugenol (ISOH), propan-1-ol, deionized water | TiO2-ZrO2 oxide system: one-stage synthesis, Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4 mixed with a chelating complex (diethylamine or isoeugenol), calcination: 500, 650 °C in air and 350, 400 °C in a nitrogen atmosphere | amorphous structure (materials calcined at 500 °C), crystal structure of anatase and rhombic TiO2-ZrO2 (materials calcined at 650 °C), BET surface area = 7.8 m2/g (TiO2-ZrO2-ISOH) and 8.3 m2/g (TiO2-ZrO2-DEA) for samples calcined in a nitrogen atmosphere, 240 m2/g (TiO2-ZrO2-ISOH) and 186 m2/g (TiO2-ZrO2-DEA) for samples calcined in air | [193] |
TiF4, Zr(NO3)4, anodic aluminium oxide (AAO), ethanol, sulphuric acid, deionized water | TiO2-ZrO2 oxide system: single-step synthesis, AAO was immersed in Zr(NO3)4, drying: 80 °C for 1 h, immersed in TiF4 for 9 min, calcination: 600 °C for 3 h | crystal structure of anatase and monoclinic zirconia, nanotube-shaped particles densely packed, BET surface area = 47.4 m2/g | [26] |
Ti(OC4H9)4, Zr(OC4H9)4, butan-1-ol, ammonium hydroxide, deionized water | TiO2-ZrO2 oxide system: single-step synthesis, hydrolysis of Ti(OC4H9)4, Zr(OC4H9)4 in butan-1-ol:water, ammonium hydroxide was added to neutralize the pH, drying: 120 °C for 12 h, calcination: 500 °C for 12 h | crystal structure of anatase, monoclinic and tetragonal zirconia, Raman spectroscopy showed anatase-specific bands, BET surface area = 68, 62 and 60 m2/g for systems obtained at molar ratio TiO2:ZrO2 = 3:1, 1:1, 1:3 | [194] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, ethanol, deionized water | TiO2-ZrO2: single-step synthesis, hydrolysis of Ti(OC4H9)4, Zr(OC4H9)4 in ethanol:water, drying: 100 °C for 6 h, calcination: 550 °C for 2 h | crystal structure of anatase, monoclinic and tetragonal zirconia, spherical shaped particles with a pronounced tendency to agglomerate, BET surface area 32.5, 42.5, 36 m2/g for 67%TiO2-33%ZrO2, 50%TiO2-50%ZrO2, 33%TiO2-67%ZrO2 | [195] |
Process Parameters | ||
---|---|---|
Solution | Apparatus | External Environment |
type of solvent | applied voltage | temperature |
concentration | distance of nozzle from collector | humidity |
- | diameter and length of nozzle | - |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, polyvinylpyrrolidone, acetic acid, ethanol, deionized water | solution of TiO2 and ZnO: Zn(CH3COO)2·2H2O, acetic acid and Ti[OCH(CH3)2]4 dissolved in a mixture of ethanol and polyvinylpyrrolidone TiO2-ZnO electrospinning: voltage: +7 kV, spinning speed 0.3 cm3/h calcination: 500 °C for 3 h | nanofibre shaped particles, X-ray photoelectron spectroscopy (XPS) shows bands derived from Ti2p, O1s, Zn2p | [232] |
Ti[OCH(CH3)2]4, Zn(C2H5)2, dimethylformamide (DMF), acetic acid, poly(vinyl acetate), deionized water | preparation of TiO2 solution: Ti[OCH(CH3)2]4, acetic acid, dimethylformamide, polyvinyl acetate TiO2 electrospinning: voltage: +10 kV, spinning speed 0.2 cm3/h, calcination: 600 °C for 8 h TiO2-ZnO oxide system: ZnO was applied by atomic layer deposition (ALD) | crystal structure of anatase and wurtzite, nanofibre particles of core-shell structure, average nanofibre diameter 250 nm, increase of ZnO coating thickness 0.66 nm per ALD cycle | [233] |
Ti[OCH(CH3)2]4, ZnCl2, polyvinylpyrrolidone, (PEO)20(PPO)70(PEO)20 (Pluronic P123), ethanol, deionized water | preparation of TiO2 and ZnO precursors: polyvinylpyrrolidone dissolved in ethanol, Ti(OCH(CH3)2)4 solution added to aqueous ZnCl2 solution, calcination: 500 °C for 4 h TiO2-ZnO electrospinning: voltage: +20 kV | crystal structure of anatase, wurtzite and zinc titanate (ZnTiO3), particles with diameter 20 nm, BET specific surface area = 203 m2/g, pore volume 0.24 cm3/g | [234] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, cellulose acetate, dimethylformamide (DMF), acetic acid, acetone, deionized water | preparation of TiO2 and ZnO precursors: Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O cellulose acetate was dissolved in a mixture of DMF:acetone = 1:2 (v/v) TiO2-ZnO electrospinning: voltage: +10 kV, spinning speed 10 μL/min, calcination: 500 °C for 5 h | crystal structure of anatase, wurtzite and zinc titanate (ZnTiO3), diameter of nanofibres 85–200 nm, cylindrical nanofibres made of granular nanoparticles, XPS showed characteristic bands Ti2p, O1s and Zn2p | [235] |
Ti[OCH(CH3)2]4, ZnO, poly(vinyl acetate) (PVA), dimethylformamide (DMF), acetic acid, deionized water | preparation of TiO2 and ZnO precursors: polyvinyl acetate was dissolved in DMF, added Ti[OCH(CH3)2]4 and ZnO TiO2-ZnO electrospinning: voltage: +12 kV, drying: 80 °C for 12 h, calcination: 600 °C for 1 h | crystal structure of wurtzite, nanofibres with a smooth surface, EDX showed presence of elements Ti, Zn, O | [236] |
Ti[OCH(CH3)2]4, Zn(CH3COO)2·2H2O, polyvinylpyrrolidone, dimethylformamide (DMF), ethanol, deionized water | preparation of precursors TiO2 and ZnO: Ti[OCH(CH3)2]4 and Zn(CH3COO)2·2H2O dissolved in DMF, polyvinylpyrrolidone was added TiO2-ZnO electrospinning: voltage: +10 kV, calcination: 400 °C for 2 h | crystal structure of anatase and wurtzite, nanofibres composed of individual nanoparticles, XPS showed presence of specific bands for Ti2p, Zn2p, O1s | [237] |
TiO2 (P25), Zn(CH3COO)2·2H2O, hexamethyltetramine, ethanol, demineralized water | electrospinning of TiO2 fibres: P25 solution and polymer in ethanol, applied voltage: +15 eV, TiO2 fibres mixed with solution 1 heating: 120 °C for 1 h TiO2 nanofibres were immersed in solution 2 (aqueous zinc acetate solution and hexamethyl tetramine) and maintained at 85 °C for 24 h, calcination: 500 °C for 1 h | crystal structure of anatase, rutile and wurtzite, TiO2 fibres coated with ZnO nanorods, EDX spectrum contained specific bands characteristic for Ti, O, Zn, Raman spectrum contained bands characteristic for TiO2, ZnO and ZnTiO3 | [238] |
Resources | Synthesis Conditions | Physico-Chemical Properties of the Final Product | References |
---|---|---|---|
Ti(O4H9)4, ZrOCl2, polyvinylpyrrolidone, acetic acid, ethanol, deionized water | solution of ZrO2:ZrOCl2 was dissolved in ethanol:water, poly(vinylpyrrolidone) was added, stirred for 12 h at room temperature TiO2:Ti(O4H9)4 solution was hydrolysed in ethanol:acetic acid, polyvinylpyrrolidone solution was added, stirred for 6 h at room temperature TiO2-ZrO2 electrospinning: voltage for the ZrO2 stream: +5 kV, voltage for TiO2: −7 kV, calcination: 600 °C for 3 h | crystal structure of anatase and tetragonal zirconia, presence of nanofibers with different diameters, (130 nm and 70 nm for ZrO2 and TiO2 respectively) | [254] |
Ti[OCH(CH3)2]4, Zr[OCH(CH3)2]4, polyvinylpyrrolidone, phosphoric acid, acetic acid, ethanol, deionized water | TiO2 and ZrO2 precursor solution: polyvinylpyrrolidone dissolved in ethanol, mixed for 1 h, acetic acid, Ti [CH(CH3)2]4, Zr[OCH(CH3)2]4 (atomic ratio Ti:Zr = 1:1) TiO2-ZrO2 electrospinning: voltage 14 kV, spinning speed 30 μL/min, calcination: 500, 700, 1000 °C for 6 h | amorphous structure for material calcined at 500 °C, crystal structure of srilankite (Ti0.5Zr0.5O2) for calcination temperature 700 and 1000 °C, BET surface area = 75 m2/g for material calcined at 500 °C, average fibre diameter 497 nm (before calcination) and 344 nm (after calcination at 500 °C) | [255] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak, A.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials 2018, 11, 2295. https://doi.org/10.3390/ma11112295
Kubiak A, Siwińska-Ciesielczyk K, Jesionowski T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials. 2018; 11(11):2295. https://doi.org/10.3390/ma11112295
Chicago/Turabian StyleKubiak, Adam, Katarzyna Siwińska-Ciesielczyk, and Teofil Jesionowski. 2018. "Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review" Materials 11, no. 11: 2295. https://doi.org/10.3390/ma11112295
APA StyleKubiak, A., Siwińska-Ciesielczyk, K., & Jesionowski, T. (2018). Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials, 11(11), 2295. https://doi.org/10.3390/ma11112295