Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Microstructure Evolution
3.2. Mechanical Properties
4. Discussion
4.1. Work-Hardening Rate (WHR)
4.2. Austenite Stability and Mechanical Fracture Morphology
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.C.; Ding, H.; Misra, R.D.K.; Cai, Z.H. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater. Sci. Eng. A 2017, 682, 211–219. [Google Scholar] [CrossRef]
- Suh, D.W.; Kim, S.J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges. Scr. Mater. 2017, 126, 63–67. [Google Scholar] [CrossRef]
- Shao, C.W.; Hui, W.J.; Zhang, Y.J.; Zhao, X.L. Effect of intercritical annealing time on hydrogen embrittlement of warm-rolled medium Mn steel. Mater. Sci. Eng. A 2018, 726, 320–331. [Google Scholar] [CrossRef]
- Niu, G.; Wu, H.B.; Zhang, D.; Gong, N.; Tang, D. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility. Mater. Sci. Eng. A 2018, 725, 187–195. [Google Scholar] [CrossRef]
- Alturk, R.; Hector, L.G.; Enloe, C.M.; Abu-Farha, F.W.; Brown, T. Strain Rate Effect on Mechanical Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel. JOM 2018, 70, 894–905. [Google Scholar] [CrossRef]
- Yang, F.; Luo, H.W.; Hu, C.D.; Pu, E.X.; Dong, H. Effects of intercritical annealing process on microstructures and mechanical properties of cold-rolled 7Mn steel. Mater. Sci. Eng. A 2017, 685, 115–122. [Google Scholar] [CrossRef]
- Magalhães, A.S.; dos Santos, C.E.; Ferreira, A.O.V.; Alves, D.S.; Santos, D.B. Analysis of medium manganese steel through cold-rolling and intercritical annealing or warm-rolling. Mater. Sci. Tec. 2018, 1–14. [Google Scholar] [CrossRef]
- Luo, L.B.; Li, W.; Wang, L.; Zhou, S.; Jin, X.J. Mechanical behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater. Sci. Eng. A 2016, 682, 698–703. [Google Scholar] [CrossRef]
- Liu, C.Q.; Peng, Q.C.; Xue, Z.L.; Deng, M.M.; Wang, S.J.; Yang, C.W. Microstructure-Mechanical Properties Relationship and Austenite Stability of a Nb-Mo Micro-Alloyed Medium-Mn TRIP Steel. Metals 2018, 8, 615. [Google Scholar] [CrossRef]
- Li, X.; Song, R.B.; Zhou, N.P.; Li, J.J. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scr. Mater. 2018, 154, 30–33. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, Y.; Qiu, L.; Liu, Y.; Sun, X.; Zuo, L. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel. Materials 2014, 7, 7891–7906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ding, H. An Investigation on the Microstructure and Mechanical Properties of Hot Rolled Medium Manganese TRIP Steel. In Proceedings of the International Conference on Martensitic Transformations, Chicago, MI, USA, 11 April 2018; pp. 67–71. [Google Scholar]
- Cai, Z.H.; Ding, H.; Xue, X.; Xin, Q.B. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater. Sci. Eng. A 2013, 560, 388–395. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Bhattacharjee, D.; Jha, G.; Gope, N.; Singh, S.B. Microstructural and mechanical characterization of C–Mn–Al–Si cold-rolled TRIP-aided steel. Mater. Sci. Eng. A 2007, 445, 549–557. [Google Scholar] [CrossRef]
- Jha, B.K.; Avtar, R.; Dwivedi, V.S. Structure-property correlation in low carbon low alloy high strength wire rods/wire containing retained austenite. Trans. Indian Inst. Met. 1996, 49, 133–142. [Google Scholar]
- Kang, S.; Speer, J.G.; Krizan, D.; Matlock, D.K.; De Moor, E. Prediction of mechanical properties of intercritically annealed Al-containing 0.19 C–4.5 Mn (wt%) TRIP steels. Mater. Des. 2016, 97, 138–146. [Google Scholar] [CrossRef]
- Mcgrath, M.C.; Aken, D.C.V.; Medvedeva, N.I.; Medvedeva, J.E. Work Hardening Behavior in Steel with Multiple TRIP Mechanisms. Metall. Mater. Trans. A 2013, 44, 4634–4643. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.H.; Ding, H.; Misra, R.D.K.; Kong, H. Unique serrated flow dependence of critical stress in a hot-rolled Fe–Mn–Al–C steel. Scr. Mater. 2014, 71, 5–8. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, T.; Liu, H.; Guo, S.; Liu, Y. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying. Metall. Mater. Trans. A 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Li, Z.C.; Misra, R.D.K.; Cai, Z.H.; Li, H.X.; Ding, H. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect. Mater. Sci. Eng. A 2016, 673, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.H.; Ding, H.; Misra, R.D.K.; Ying, Z.Y. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015, 84, 229–236. [Google Scholar] [CrossRef]
- Xu, Y.B.; Zou, Y.; Hu, Z.P.; Han, D.T.; Chen, S.Q.; Misra, R.D.K. Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel. Mater. Sci. Eng. A 2017, 698, 126–135. [Google Scholar] [CrossRef]
- García-Mateo, C.; Caballero, F.G. The Role of Retained Austenite on Mechanical Properties of Steels with Bainitic Microstructures. Mater. Trans. 2005, 46, 1839–1846. [Google Scholar] [CrossRef]
- Sugimoto, K.I.; Kobayashi, M.; Hashimoto, S.I. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall. Trans. A 1992, 23, 3085–3091. [Google Scholar] [CrossRef]
- Ishikawa, K. Fractals in dimple patterns of ductile fracture. J. Mater. Sci. Lett. 1990, 9, 400–402. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Lee, J.; Barlat, F.; De Cooman, B.C. Characterization of fracture in medium Mn steel. Mater. Sci. Eng. A 2017, 687, 200–210. [Google Scholar] [CrossRef]
RAP | YS (MPa) | UTS (MPa) | True UTS (MPa) | YS/UTS | TE (%) | True TE (%) | PSE (GPa%) | |
---|---|---|---|---|---|---|---|---|
HR | 600 °C | 956 | 1050 | 1177 | 0.84 | 16 | 15 | 16.8 |
625 °C | 897 | 1060 | 1229 | 0.80 | 22 | 20 | 23.3 | |
650 °C | 812 | 1067 | 1360 | 0.76 | 34 | 29 | 36.2 | |
690 °C | 780 | 1130 | 1328 | 0.69 | 22 | 20 | 24.9 | |
CR | 600 °C | 832 | 878 | 1039 | 0.95 | 28 | 25 | 24.6 |
625 °C | 695 | 1059 | 1366 | 0.66 | 37 | 32 | 33.9 | |
650 °C | 690 | 1025 | 1350 | 0.67 | 40 | 34 | 41.0 | |
675 °C | 659 | 1190 | 1503 | 0.55 | 33 | 29 | 39.3 | |
700 °C | 980 | 1084 | 1369 | 0.90 | 20 | 18 | 21.7 | |
750 °C | 1150 | 1373 | 1433 | 0.84 | 18 | 13 | 24.7 |
Sample | Nominal content | Equilibrium content | Average measured content |
---|---|---|---|
HR 650 °C | 5 | 10.6 | 8.4 ± 0.2 |
CR 650 °C | 5 | 10.6 | 8.0 ± 0.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Peng, Q.; Xue, Z.; Wang, S.; Yang, C. Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels. Materials 2018, 11, 2242. https://doi.org/10.3390/ma11112242
Liu C, Peng Q, Xue Z, Wang S, Yang C. Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels. Materials. 2018; 11(11):2242. https://doi.org/10.3390/ma11112242
Chicago/Turabian StyleLiu, Chunquan, Qichun Peng, Zhengliang Xue, Shijie Wang, and Chengwei Yang. 2018. "Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels" Materials 11, no. 11: 2242. https://doi.org/10.3390/ma11112242
APA StyleLiu, C., Peng, Q., Xue, Z., Wang, S., & Yang, C. (2018). Microstructure and Mechanical Properties of Hot- Rolled and Cold-Rolled Medium-Mn TRIP Steels. Materials, 11(11), 2242. https://doi.org/10.3390/ma11112242