Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading
Abstract
:1. Introduction
2. Materials and Experimental Procedure
2.1. Materials
2.2. Specimen and Experimental Procedure
3. Results and Discussion
3.1. Validity of the Prepared Tube Specimen
3.2. Fatigue Life
3.3. Cyclic Stress–Strain Response
3.4. Fractography Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Auvinen, A.; Jokiniemi, J.K.; Lähde, A.; Routamo, T.; Lundström, P.; Tuomisto, H.; Dienstbier, J.; Güntay, S.; Suckow, D.; Dehbi, A.; et al. Steam generator tube rupture (SGTR) scenarios. Nucl. Eng. Des. 2005, 235, 457–472. [Google Scholar] [CrossRef]
- Diercks, D.R.; Shack, W.J.; Muscara, J. Overview of steam generator tube degradation and integrity issues. Nucl. Eng. Des. 1999, 194, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Young, B.A.; Gao, X.; Srivatsan, T.S.; King, P.J. An investigation of the fatigue crack growth behavior of Inconel 690. Mater. Sci. Eng. A 2006, 416, 187–191. [Google Scholar] [CrossRef]
- Chai, G.; Liu, P.; Frodigh, J. Cyclic deformation behaviour of a nickel base alloy at elevated temperature. J. Mater. Sci. 2004, 39, 2689–2697. [Google Scholar] [CrossRef]
- Park, H.B.; Kim, Y.H.; Lee, B.W.; Rheem, K.S. Effect of heat treatment on fatigue crack growth rate of inconel 690 and inconel 600. J. Nucl. Mater. 1996, 231, 204–212. [Google Scholar] [CrossRef]
- Park, D.K.; Woo, S.W.; Chung, I.S.; Chai, Y.S.; Kwon, J.D. Evaluation of fretting fatigue life for steam generator tubes in nuclear power plants. Key Eng. Mater. 2007, 345–346, 243–246. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Guan, H.-D.; Chen, Z.-Q.; Qian, H.; Tang, L.-C.; Zhou, Z.-R.; Zhu, M.-H. Impact fretting wear behavior of 304 stainless steel thin-walled tubes under low-velocity. Tribol. Int. 2017, 105, 219–228. [Google Scholar] [CrossRef]
- Xin, L.; Wang, Z.; Li, J.; Lu, Y.; Shoji, T. Microstructural characterization of subsurface caused by fretting wear of Inconel 690TT alloy. Mater. Charact. 2016, 115, 32–38. [Google Scholar] [CrossRef]
- Tan, J.; Wu, X.; Han, E.-H.; Liu, X.; Xu, X.; Sun, H. The effect of dissolved oxygen on fatigue behavior of alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros. Sci. 2016, 102, 394–404. [Google Scholar] [CrossRef]
- Xiao, J.; Qiu, S.Y.; Chen, Y.; Lin, Z.X.; Xu, Q.; Xie, H.Y. Effects of dissolved oxygen on corrosion fatigue cracking of alloy 690 (TT) in pressurized water reactor environments. Int. J. Fatigue 2015, 74, 65–70. [Google Scholar] [CrossRef]
- Ruther, W.E.; Soppet, W.K.; Kassner, T.F. Corrosion Fatigue of Alloys 600 and 690 in Simulated LWR Environments; NUREG/CR-6383, ANL-95/37; Argonne National Laboratory: Argonne, IL, USA, 1996.
- Chen, K.; Du, D.; Zhang, L.; Andresen, P.L. Corrosion fatigue crack growth behavior of alloy 690 in high-temperature pressurized water. Corrosion 2017, 73, 724–733. [Google Scholar] [CrossRef]
- Andresen, P.L.; Morra, M.M. Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water. Corrosion 2008, 64, 15–29. [Google Scholar] [CrossRef]
- Nuclear Energy System Safety Division. Environmental Fatigue Evaluation Method for Nuclear Power Plants; JNES-SS-1005; Japan Nuclear Energy Safety Organization: Tokyo, Japan, 2011. [Google Scholar]
- Higuchi, M.; Sakaguchi, K.; Hirano, A.; Nomura, Y. Revised and new proposal of environmental fatigue life correction factor (Fen) for carbon and low-alloy steels and nickel base alloys in LWR water environments. In Volume 1: Codes and Standards, Proceedings of ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference, Vancouver, BC, Canada, 23–27 July 2006; The American Society of Mechanical Engineers: New York, NY, USA, 2006. [Google Scholar]
- Chopra, O.; Stevens, G. Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials; NUREG/CR-6909, ANL-12/60; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2014.
- Sivaprasad, S.; Bar, H.N.; Gupta, S.K.; Arora, P.; Bhasin, V.; Tarafder, S. A comparative assessment of cyclic deformation behaviour in SA333 Gr.6 steel using solid, hollow specimens under axial and shear strain paths. Int. J. Fatigue 2014, 61, 76–86. [Google Scholar] [CrossRef]
- McClaflin, D.; Fatemi, A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects. Int. J. Fatigue 2004, 26, 773–784. [Google Scholar] [CrossRef]
- Bae, K.-H.; Lee, S.-B. The effect of specimen geometry on the low cycle fatigue life of metallic materials. Mater. High Temp. 2011, 28, 33–39. [Google Scholar] [CrossRef]
- Van Den Avyle, J.A. Low cycle fatigue of tubular specimens. Scr. Met. 1983, 17, 737–740. [Google Scholar] [CrossRef]
- Weiss, B.; Stickler, R. Ultrasonic fatigue testing of thin-walled stainless steel tubes. Metall. Trans. 1970, 1, 1057–1060. [Google Scholar]
- Carstensen, J.V.; Mayer, H.; BrØNdsted, P. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 837–844. [Google Scholar] [CrossRef]
- Yoon, S.; Hong, S.-G.; Lee, S.-B.; Kim, B.-S. Low cycle fatigue testing of 429EM stainless steel pipe. Int. J. Fatigue 2003, 25, 1301–1307. [Google Scholar] [CrossRef]
- Lambertsen, S.H.; Damkilde, L.; Jepsen, M.S. Fatigue of thin-walled tubes in copper alloy CuNi10. Ships Offshore Struct. 2016, 11, 75–80. [Google Scholar] [CrossRef]
- Khatibi, G.; Lederer, M.; Betzwar Kotas, A.; Frotscher, M.; Krause, A.; Poehlmann, S. High-cycle fatigue behavior of thin-walled cocr tubes. Int. J. Fatigue 2015, 80, 103–112. [Google Scholar] [CrossRef]
- ASTM E8/E8M-13. Standard Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASME SB-167. Specification for Nickel-Chromium-Iron Alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, and N06045) and Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617) Seamless pipe and tube. In ASME Boiler and Pressure Vessel Code Section II Part B Nonferrous Material Specifications; The American Society of Mechanical Engineers: New York, NY, USA, 2013. [Google Scholar]
- ASTM E606/E606M-12. Standard Test Method for Strain-Controlled Fatigue Testing; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Langer, B.F. Design of Pressure Vessels for Low-Cycle Fatigue. ASME J. Basic Eng. 1962, 84, 389–402. [Google Scholar] [CrossRef]
- Plumtree, A.; Abdel-Raouf, H.A. Cyclic stress–strain response and substructure. Int. J. Fatigue 2001, 23, 799–805. [Google Scholar] [CrossRef]
Ni | Cr | Fe | C | Mn | Si | Cu | S |
---|---|---|---|---|---|---|---|
58.0 min. | 27.0–31.0 | 7.0–11.0 | 0.05 max. | 0.50 max. | 0.50 max. | 0.5 max. | 0.015 max. |
Item | Young’s Modulus (MPa) | Yield Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|
This work | 2.12 × 105 | 286 | 702 |
ASME SB-167 [27] | -- | 240 | 586 |
Site | Internal Surface | External Surface | |
---|---|---|---|
As-Received Tube | Thinned Tube | ||
Ra (μm) | 0.135 | 0.070 | 0.342 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Chen, J.; Tian, W.; Li, Y.; Jin, W. Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading. Materials 2018, 11, 1944. https://doi.org/10.3390/ma11101944
He X, Chen J, Tian W, Li Y, Jin W. Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading. Materials. 2018; 11(10):1944. https://doi.org/10.3390/ma11101944
Chicago/Turabian StyleHe, Xing, Junfeng Chen, Wei Tian, Yuebing Li, and Weiya Jin. 2018. "Low Cycle Fatigue Behavior of Steam Generator Tubes under Axial Loading" Materials 11, no. 10: 1944. https://doi.org/10.3390/ma11101944