Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Basic Properties of IZTO Films with Various Sputtering Powers
3.2. Properties of IZTO Films as Transparent Conducting Electrodes for Electrochromic Devices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Electrochromic materials: Out of a niche. Nat. Mater. 2006, 5, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, C.G. Electrochromic tungsten oxide lms: Review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 2000, 60, 201–262. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, J.; Ke, L.; Liu, X.; Demir, H.V.; Yang, M.F.; Sun, X.W. Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device. Electrochim. Acta 2012, 63, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.F.; Chiou, B.S. Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing. Thin Solid Films 1994, 247, 201–207. [Google Scholar] [CrossRef]
- Sun, X.W.; Wang, J.X. Fast Switching Electrochromic Display Using a Viologen-Modified ZnO Nanowire Array Electrode. Nano Lett. 2008, 8, 1884–1889. [Google Scholar] [CrossRef] [PubMed]
- Kateb, M.; Safarian, S.; Kolahdouz, M.; Fathipour, M.; Ahamdi, V. ZnO-PEDOT core-shell nanowires: An ultrafast, high contrast and transparent electrochromic display. Sol. Energy Mater. Sol. Cells 2016, 145, 200–205. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, J.; Zhou, Y.; Xie, J.; Zhang, X.; Guan, M.; Pan, B.; Xie, Y. High-performance flexible electrochromic device based on facile semiconductor-to- metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 2013, 3, 1936. [Google Scholar] [CrossRef] [PubMed]
- Moriga, T.; Edwards, D.D.; Mason, T.O.; Palmer, G.B.; Poeppelmeier, K.R.; Schindler, J.L.; Kannewurf, C.R.; Nakabayashi, I. Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J. Am. Ceram. Soc. 1998, 81, 1310–1316. [Google Scholar] [CrossRef]
- Ko, Y.D.; Kim, Y.S. Room temperature deposition of IZTO transparent anode films for organic light-emitting diodes. Mater. Res. Bull. 2012, 47, 2800–2803. [Google Scholar] [CrossRef]
- Ohashi, N.; Sakaguchi, I.; Hishita, S.; Adachi, Y.; Hareda, H.; Ogino, T. Crystallinity of In2O3(ZnO)5 films by epitaxial growth with a self-buffer-layer. J. Appl. Phys. 2002, 92, 2378–2384. [Google Scholar] [CrossRef]
- Serpone, N.; Lawless, D.; Khairutdinov, R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? J. Phys. Chem. 1995, 99, 16646–16654. [Google Scholar] [CrossRef]
- Chen, W.L.; Shen, G.S.; Wu, Z.; Li, Z.; Hong, R.J. Optimizing transparent conductive Al-doped ZnO thin films for SiNx free crystalline Si solar cells. J. Mater. Sci. Mater. Electron. 2016, 27, 7566–7572. [Google Scholar] [CrossRef]
- Bae, J.H.; Moon, J.M.; Jeong, S.W.; Kim, J.J.; Kang, J.W.; Kim, D.G.; Kim, J.K.; Park, J.W.; Kim, H.K. Transparent Conducting Indium Zinc Tin Oxide Anode for Highly Efficient Phosphorescent Organic Light Emitting Diodes. J. Electrochem. Soc. 2008, 155, J1–J6. [Google Scholar] [CrossRef]
- Tak, Y.H.; Kim, K.B.; Park, H.G.; Lee, K.H.; Lee, J.R. Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 2002, 411, 12–16. [Google Scholar] [CrossRef]
- Faughnan, B.W.; Crandall, R.S.; Heyman, P.M. Electrochromism in tungsten(VI) oxide amorphous films. RCA Rev. 1975, 36, 177–197. [Google Scholar]
- Habib, M.A.; Glueck, D. The electrochromic properties of chemically deposited tungsten oxide films. Sol. Energy Mater. 1989, 181, 127–141. [Google Scholar] [CrossRef]
- Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P.S. Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef]
Processing | Working Pres. (Pa) | Base Pres. (mPa) | Ar (sccm) | DC Power (W) | Thickness (nm) | Time (min) | Deposition Temp. (°C) | Deposition Rate. (nm/min) |
---|---|---|---|---|---|---|---|---|
sample-1 | 0.13 | 9.33 × 10−4 | 30 | 50 | 250 | 14.25 | RT | 17.54 |
sample-2 | 0.13 | 9.33 × 10−4 | 30 | 75 | 250 | 11 | RT | 22.72 |
sample-3 | 0.13 | 9.33 × 10−4 | 30 | 100 | 250 | 9.1 | RT | 27.47 |
sample-4 | 0.13 | 9.33 × 10−4 | 30 | 125 | 250 | 6.0 | RT | 41.66 |
sample-5 | 0.13 | 9.33 × 10−4 | 30 | 150 | 250 | 4.9 | RT | 51.02 |
Target | Working Pres. (Pa) | Base Pres. (mPa) | Ar/O2 (sccm) | Power (W) | Thickness (nm) | Time (min) | Deposition Temp. (°C) | Deposition Rate. (nm/min) |
---|---|---|---|---|---|---|---|---|
Metal W | 2.7 | 1.3 × 10−3 | 75/375 | 1350 | 220 | 15 | RT | 14.67 |
Sputtering Powers (W) | 50 W | 75 W | 100 W | 125 W | 150 W |
---|---|---|---|---|---|
Average transmittance in a wavelength region (%) | 83.64 | 80.47 | 79.42 | 80.41 | 79.11 |
Bandgap (eV) | 3.37 | 3.37 | 3.39 | 3.49 | 3.34 |
Sample | IZTO (W) | Anodic Peak Current (jpa) | Cathodic Spike Current (jpc) | Diffusion Coefficient (cm2/s) | |
---|---|---|---|---|---|
D for ipa | D for ipc | ||||
1 | 50 | 2.67 × 10−4 | 2.76 × 10−3 | 1.60 × 10−10 | 1.72 × 10−10 |
2 | 75 | 1.17 × 10−4 | 3.91 × 10−3 | 3.08 × 10−10 | 3.45 × 10−10 |
3 | 100 | 1.73 × 10−3 | 5.86 × 10−3 | 6.75 × 10−10 | 7.75 × 10−10 |
4 | 125 | 2.04 × 10−3 | 6.00 × 10−3 | 9.38 × 10−10 | 8.12 × 10−10 |
5 | 150 | 6.15 × 10−3 | 3.11 × 10−3 | 8.53 × 10−10 | 2.18 × 10−10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-D.; Chen, P.-W.; Chang, K.-S.; Hsu, S.-C.; Jan, D.-J. Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications. Materials 2018, 11, 2221. https://doi.org/10.3390/ma11112221
Li K-D, Chen P-W, Chang K-S, Hsu S-C, Jan D-J. Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications. Materials. 2018; 11(11):2221. https://doi.org/10.3390/ma11112221
Chicago/Turabian StyleLi, Ke-Ding, Po-Wen Chen, Kao-Shuo Chang, Sheng-Chuan Hsu, and Der-Jun Jan. 2018. "Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications" Materials 11, no. 11: 2221. https://doi.org/10.3390/ma11112221
APA StyleLi, K.-D., Chen, P.-W., Chang, K.-S., Hsu, S.-C., & Jan, D.-J. (2018). Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications. Materials, 11(11), 2221. https://doi.org/10.3390/ma11112221