Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737. [Google Scholar] [CrossRef]
- Snaith, H.J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future—Bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591. [Google Scholar] [CrossRef]
- Ferry, V.E.; Verschuuren, M.A.; van Lare, M.C.; Schropp, R.E.; Atwater, H.A.; Polman, A. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si: H solar cells. Nano Lett. 2011, 11, 4239–4245. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhu, H.; Yuan, Y.; Ha, D.; Zhu, S.; Preston, C.; Chen, Q.; Li, Y.; Han, X.; Lee, S. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 2014, 14, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.; Fang, Z.; Hu, L.; Munday, J.N. Paper-Based Anti-Reflection Coatings for Photovoltaics. Adv. Energy Mater. 2014, 4, 1301804. [Google Scholar] [CrossRef]
- Liu, R.; Lee, S.; Sun, B. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007–6012. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.W.; Choi, M.; Yu, J.S. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules. ACS Appl. Mater. Interfaces 2015, 7, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Goh, T.; Li, X.; Sfeir, M.Y.; Bielinski, E.A.; Tomasulo, S.; Lee, M.L.; Hazari, N.; Taylor, A.D. Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nat. Photonics 2013, 7, 479. [Google Scholar] [CrossRef]
- Lee, Y.; Huang, C.; Chang, J.; Wu, M. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings. Opt. Express 2008, 16, 7969–7975. [Google Scholar] [CrossRef] [PubMed]
- Poruba, A.; Fejfar, A.; Remeš, Z.; Špringer, J.; Vaněček, M.; Kočka, J.; Meier, J.; Torres, P.; Shah, A. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys. 2000, 88, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Derkacs, D.; Lim, S.; Matheu, P.; Mar, W.; Yu, E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006, 89, 093103. [Google Scholar] [CrossRef]
- Narasimhan, V.K.; Cui, Y. Nanostructures for photon management in solar cells. Nanophotonics 2013, 2, 187–210. [Google Scholar] [CrossRef]
- Kang, G.; Bae, K.; Nam, M.; Ko, D.; Kim, K.; Padilla, W.J. Broadband and ultrahigh optical haze thin films with self-aggregated alumina nanowire bundles for photovoltaic applications. Energy Environ. Sci. 2015, 8, 2650–2656. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Zhen, H.; Wang, H.; Liu, S.; Yan, F.; Zheng, Z. Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. J. Mater. Chem. A 2017, 5, 969–974. [Google Scholar] [CrossRef]
- Preston, C.; Xu, Y.; Han, X.; Munday, J.N.; Hu, L. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Jo, S.; Choi, S. A monodomain-like liquid-crystalline simple cubic blue phase II. J. Inf. Disp. 2015, 16, 155–160. [Google Scholar] [CrossRef]
- Bae, J.; Kim, B.; Jo, S.; Choi, S. Robust and monodomain-like polymer-stabilized simple cubic blue phase with red, green, and blue reflective colors. J. Inf. Disp. 2017, 18, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Choi, H.; Bae, J.; Kim, B.; Choi, S. Photomodulating chiroptic behaviors in nanosegregated mesophase from a mixture system consisting of nonchiral bent-core and photo-responsive rod-like mesogens. J. Inf. Disp. 2018. [Google Scholar] [CrossRef]
- Clausen, J.; Christiansen, A.B.; Garnaes, J.; Mortensen, N.A.; Kristensen, A. Color effects from scattering on random surface structures in dielectrics. Opt. Express 2012, 20, 4376–4381. [Google Scholar] [CrossRef] [PubMed]
- Ge, D.; Lee, E.; Yang, L.; Cho, Y.; Li, M.; Gianola, D.S.; Yang, S. A Robust Smart Window: Reversibly Switching from High Transparency to Angle-Independent Structural Color Display. Adv. Mater. 2015, 27, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Coates, D. Polymer-dispersed liquid crystals. J. Mater. Chem. 1995, 5, 2063–2072. [Google Scholar] [CrossRef]
- Wu, B.; Erdmann, J.H.; Doane, J.W. Response times and voltages for PDLC light shutters. Liq. Cryst. 1989, 5, 1453–1465. [Google Scholar] [CrossRef]
- Cho, C.; Jeong, S.; Lee, J. Optical study of thin-film photovoltaic cells with apparent optical path length. J. Opt. 2016, 18, 094001. [Google Scholar] [CrossRef]
- Boots, H.; Kloosterboer, J.; Serbutoviez, C.; Touwslager, F. Polymerization-Induced Phase Separation. 1. Conversion—Phase Diagrams. Macromolecules 1996, 29, 7683–7689. [Google Scholar] [CrossRef]
- Serbutoviez, C.; Kloosterboer, J.; Boots, H.; Touwslager, F. Polymerization-induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films. Macromolecules 1996, 29, 7690–7698. [Google Scholar] [CrossRef]
- Klosowicz, S.J. Optimization of nematic LC mixtures for PDLC devices. Liq. Cryst. 1995, 2372, 258–262. [Google Scholar]
- Montgomery, G.P., Jr.; West, J.L.; Tamura-Lis, W. Light scattering from polymer-dispersed liquid crystal films: Droplet size effects. J. Appl. Phys. 1991, 69, 1605–1612. [Google Scholar] [CrossRef]
- Marinov, Y.; Hadjichristov, G.; Petrov, A.; Marino, S.; Versace, C.; Scaramuzza, N. Electro-optical response of polymer-dispersed liquid crystal single layers of large nematic droplets oriented by rubbed teflon nanolayers. J. Appl. Phys. 2013, 113, 064301. [Google Scholar] [CrossRef]
Module | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | PCE ↑ (%) |
---|---|---|---|---|---|
PV-R | 19.73 | 1.12 | 67.37 | 14.90 | |
PV-30 | 20.30 | 1.12 | 67.37 | 15.32 | 2.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.-H.; Jung, E.D.; Nam, Y.S.; Kim, B.-C.; Choi, H.-J.; Kim, H.G.; Song, M.H.; Choi, S.-W. Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology. Materials 2018, 11, 2188. https://doi.org/10.3390/ma11112188
Bae J-H, Jung ED, Nam YS, Kim B-C, Choi H-J, Kim HG, Song MH, Choi S-W. Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology. Materials. 2018; 11(11):2188. https://doi.org/10.3390/ma11112188
Chicago/Turabian StyleBae, Jae-Hyun, Eui Dae Jung, Yun Seok Nam, Byeong-Cheon Kim, Hyeon-Joon Choi, Hyun Gi Kim, Myoung Hoon Song, and Suk-Won Choi. 2018. "Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology" Materials 11, no. 11: 2188. https://doi.org/10.3390/ma11112188
APA StyleBae, J. -H., Jung, E. D., Nam, Y. S., Kim, B. -C., Choi, H. -J., Kim, H. G., Song, M. H., & Choi, S. -W. (2018). Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology. Materials, 11(11), 2188. https://doi.org/10.3390/ma11112188