Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack
Abstract
1. Introduction
2. Theoretical Modeling
3. Simulation Results
4. Discussion
4.1. Multipeak CRIT Effect
4.2. Electrical Modulation of MGIS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, G.T.; Li, H.J.; Zhan, S.P.; Xu, H.Q.; Liu, Z.M.; He, Z.H.; Wang, Y. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Opt. Express 2013, 21, 9198–9205. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.M.; Mao, D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 2012, 85, 053803. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef]
- Lai, G.; Liang, R.S.; Zhang, Y.J.; Bian, Z.Y.; Yi, L.X.; Zhan, G.Z.; Zhao, R.T. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt. Express 2015, 23, 6554–6561. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, M.; Kwong, D.L.; Wong, C.W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 2009, 102, 173902. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.J.; Sandhu, S.; Pan, J.; Stuhrmann, N.; Povinelli, M.L.; Kahn, J.M.; Harris, J.S.; Fejer, M.M.; Fan, S.H. Experimental demonstration of two methods for controlling the group delay in a system with photonic-crystal resonators coupled to a waveguide. Opt. Lett. 2011, 36, 1482–1484. [Google Scholar] [CrossRef] [PubMed]
- Mingaleev, S.F.; Miroshnichenko, A.E.; Kivshar, Y.S. Low-threshold bistability of slow light in photonic-crystal waveguides. Opt. Express 2007, 15, 12380–12385. [Google Scholar] [CrossRef] [PubMed]
- Vlasov, Y.A.; McNab, S.J. Coupling into the slow light mode in slab-type photonic crystal waveguides. Opt. Lett. 2006, 31, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.; Wang, L.; Gong, Y.; Mao, D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 2011, 19, 2910–2915. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.G.; Li, X.S.; Chandra, B.; Tulevski, G.; Wu, Y.Q.; Freitag, M.; Zhu, W.J.; Avouris, P.; Xia, F.N. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Liu, C.H.; Liu, C.H.; Zhang, S.; Marder, S.R.; Narimanov, E.E.; Zhong, Z.; Norris, T.B. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 2016, 7, 10568. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, P.; Voutilainen, M.; Helle, M.; Song, X.; Hakonen, P.J. Graphene for future electronics. Phys. Scr. 2012, 2012, 014025. [Google Scholar] [CrossRef]
- Hao, R.; Du, W.; Chen, H.S.; Jin, X.F.; Yang, L.Z.; Li, E.P. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 2013, 103, 061116. [Google Scholar] [CrossRef]
- Huang, X.J.; Leng, T.; Georgiou, T.; Abraham, J.; Nair, R.R.; Novoselov, K.S.; Hu, Z.R. Graphene oxide dielectric permittivity at GHz and it applications for wireless humidity sensing. Sci. Rep. 2018, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Madani, A.; Babaei, M. Tunable polarization sensitive absorber made of graphene-based hyperbolic metamaterials. Superlattice Microst. 2017, 102, 470–476. [Google Scholar] [CrossRef]
- Bian, L.A.; Liu, P.G.; Han, Z.Z.; Li, G.S.; Mao, J. Near-unity absorption in a graphene-embedded defective photonic crystals array. Superlattice Microst. 2017, 104, 461–469. [Google Scholar] [CrossRef]
- Tassin, P.; Koschny, T.; Kafesaki, M.; Soukoulis, C.M. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photonics 2012, 6, 259–264. [Google Scholar] [CrossRef]
- Liu, H.Q.; Liu, P.G.; Bian, L.A.; Liu, C.X.; Zhou, Q.H. An electro-optic modulator side-coupled with photonic crystal nanobeam loaded graphene/Al2O3 multilayer stack. Opt. Mat. Express 2018, 8, 761–774. [Google Scholar] [CrossRef]
- Zhu, W.R.; Xiao, F.J.; Kang, M.; Sikdar, D.; Premaratne, M.L. Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite. Appl. Phys. Lett. 2014, 104, 051902. [Google Scholar] [CrossRef]
- Su, Z.X.; Yin, J.B.; Zhao, X.P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures. Opt. Express 2015, 23, 1679–1690. [Google Scholar] [CrossRef] [PubMed]
- Vicarelli, L.; Vitiello, M.S.; Coquillat, D.; Lombardo, A.; Ferrari, A.C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.F.; Liu, P.G.; Yu, D.W.; Li, G.S.; Tao, F. Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity. IEEE Antenna Wirel. Propag. Lett. 2016, 1536, 1541–1544. [Google Scholar] [CrossRef]
- Othman, M.A.K.; Guclu, C.; Capolino, F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 2013, 21, 7614–7632. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Wangberg, R.; Elser, J.; Narimanov, E.E.; Podolskiy, V.A. Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media. J. Opt. Soc. Am. B 2006, 23, 498–505. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Wu, Q.Z.; Mishra, C.; Kang, J.Y.; Zhang, H.J.; Cho, K.; Cai, W.W.; Balandin, A.A.; Ruoff, R.S. Thermal conductivity if isotopically modified graphene. Nat. Mater. 2012, 11, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.; Rockstuhl, C.; Bagci, H. A 3D tunable and multi-frequency graphene plasmonic cloak. Opt. Express 2013, 21, 12592–12603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qian, C.; Qiu, K.; Gao, Y.; Xu, X. Ultrafast optical switching using photonic molecules in photonic crystal waveguides. Opt. Express 2015, 23, 9211–9220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; White, T.P.; Faolain, L.O.; Iglesias, A.G.; Krauss, T.F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 2008, 16, 6227–6232. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gu, T.Y.; McMillan, J.F.; Yu, M.B.; Lo, G.Q.; Kwong, D.L.; Feng, G.Y.; Zhou, S.H.; Wong, C.W. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 2016, 108, 111106. [Google Scholar] [CrossRef]
- Tang, B.; Dai, L.; Jiang, C. Electromagnetic response of a compound plasmonic–dielectric system with coupled-grating-induced transparency. Phys. Lett. A 2012, 376, 1234–1238. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.M.; Wang, G.X.; Mao, D. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 2012, 23, 444003. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; Ramunno, L.; Young, J.F.; Sipe, J.E. Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity. Phys. Rev. Lett. 2005, 94, 033903. [Google Scholar] [CrossRef] [PubMed]
- McNab, S.J.; Moll, N.; Vlasov, Y.A. Ultra-low loss photonic intergrated circuit with membrane-type photonic crystal waveguides. Opt. Express 2003, 11, 2927–2939. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.H.; Cui, L.; Yu, L.; Duan, G.Y.; Zhao, Y.F.; Xiao, J.H. Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 2015, 10, 721–727. [Google Scholar] [CrossRef]
- Han, Z.; Forsberg, E.; He, S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 2007, 19, 91–93. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, X.; Wang, L. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. Opt. Lett. 2010, 35, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Fussell, D.P.; Hughes, S.; Dignam, M.M. Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides. Phys. Rev. B 2008, 78, 144201. [Google Scholar] [CrossRef]
- Varmazyari, V.; Habibiyan, H.; Ghafoorifard, H. All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides. Appl. Opt. 2013, 52, 6497–6505. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Qiu, C.; Wu, J.; Jiang, X.; Liu, B.; Yang, Y.; Zhou, H.; Soref, R.; Su, Y. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt. Express 2015, 23, 23357–23364. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Kim, J.; Vuckovic, J.; Wang, F. Electrical Control of Photonic Crystal Cavity by Graphene. In Proceedings of the CLEO: Science and Innovations 2013, San Jose, CA, USA, 9–14 June 2013. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Tan, J.; Liu, P.; Bian, L.-a.; Zha, S. Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials 2018, 11, 2042. https://doi.org/10.3390/ma11102042
Liu H, Tan J, Liu P, Bian L-a, Zha S. Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials. 2018; 11(10):2042. https://doi.org/10.3390/ma11102042
Chicago/Turabian StyleLiu, Hanqing, Jianfeng Tan, Peiguo Liu, Li-an Bian, and Song Zha. 2018. "Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack" Materials 11, no. 10: 2042. https://doi.org/10.3390/ma11102042
APA StyleLiu, H., Tan, J., Liu, P., Bian, L.-a., & Zha, S. (2018). Tunable Coupled-Resonator-Induced Transparency in a Photonic Crystal System Based on a Multilayer-Insulator Graphene Stack. Materials, 11(10), 2042. https://doi.org/10.3390/ma11102042