Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5 (M = V, Ta) Predicted by First Principle Calculations
Abstract
1. Introduction
2. Materials and Methods
2.1. Model of BaMO(IO3)5
2.2. Properties Investigated
2.3. Computation Details
3. Results and Discussion
3.1. The Kinetic Stability and Thermodynamic Stability of BaMO(IO3)5 (M = V, Ta)
3.2. Reliability of Our Predictions on the NLO Properties
3.3. NLO Properties of BaVO(IO3)5 and BaTaO(IO3)5
3.4. Effect of Element Substitution on the NLO Performance
- (1)
- There is an obvious sharp peak at the bottom of the conduction band, and from Figure 6d,e we can see that this peak results from the contributions of V-3d and Nb-4d;
- (2)
- In the conduction band region, the DOS of I and O are very comparable, which exhibits the full hybrid interaction in IO3−; at the same time, their energy range (I and O) is intertwined with that of the transition metal V and Nb.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, G.G.; Lu, G.W.; Yu, Y.H.; Zhang, W.S.; Zhao, K. Calculation for linear and nonlinear optical properties of LBO crystals. Chin. J. Lasers 2010, 37, 1342–1346. [Google Scholar] [CrossRef]
- Han, S.Y.; Lu, G.W.; Zhang, J.; Xia, H.R.; Wang, C.L. Calculations for the linear and nonlinear optical coefficients of UREA crystals. J. Synth. Cryst. 2006, 35, 1346–1350. [Google Scholar]
- Chen, X.; Liu, H.; Wu, Q.; Jiang, X.; Meng, X.; Lin, Z.; Qin, J. ABi2(IO3)2F5 (A = K, Rb and Cs): Combination of halide and oxide anionic units to create large SHG response with wide bandgap. Angew. Chem. Int. Ed. 2017, 56, 9492–9496. [Google Scholar]
- Yang, Z.; Pan, S.; Yu, H.; Lee, M.H. Electronic structure and optical properties of the nonlinear optical crystal Pb4O(BO3)2 by first-principles calculations. J. Solid State Chem. 2013, 198, 77–80. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, L.; Lin, T.H.; Jiang, X.; Gong, P.; Lee, M.H.; Lin, Z. The mechanism for the nonlinear optical properties in La9Na3B8O27, La2Na3B3O9 and La2CaB10O19: ab initio studies. J. Phys. Condens. Mat. 2015, 27, 485501. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yao, J.; Lin, Z.; Wang, X.; He, R.; Yao, W.; Zhai, N.; Chen, C. NaSr3Be3B3O9F4: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10− anionic group. Angew. Chem. Int. Ed. 2011, 50, 9141–9144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lee, M.H.; Yang, Z.; Jing, Q.; Pan, S.; Zhang, M.; Wu, H.; Su, X.; Li, C.S. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl. Phys. Lett. 2015, 106, 031906. [Google Scholar]
- Ok, K.M.; Halasyamani, P.S.; Casanova, D.; Llunell, M.; Pere Alemany, A.; Alvarez, S. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem. Mater. 2006, 18, 3176–3183. [Google Scholar] [CrossRef]
- Kang, L.; Zhou, M.; Yao, J.; Lin, Z.; Wu, Y.; Chen, C. Metal thiophosphates with good mid-infrared nonlinear optical performances: A First-principles prediction and analysis. J. Am. Chem. Soc. 2015, 137, 13049–13059. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.L.; Mao, J.G. Recent advances on second-order NLO materials based on metal iodates. Coord. Chem. Rev. 2015, 288, 1–17. [Google Scholar] [CrossRef]
- Chang, H.Y.; Kim, S.H.; Halasyamani, P.S.; Ok, K.M. Alignment of lone pairs in a new polar material: Synthesis, characterization, and functional properties of Li2Ti(IO3)6. J. Am. Chem. Soc. 2016, 40, 2426–2427. [Google Scholar]
- Sun, C.F.; Hu, C.L.; Xu, X.; Ling, J.B.; Hu, T.; Kong, F.; Long, X.F.; Mao, J.G. BaNbO(IO3)5: A new polar material with a very large SHG response. J. Am. Chem. Soc. 2009, 131, 9486–9487. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Ramo, D.; Lin, Z.; Bristowe, P.; Qin, J.; Chen, C. First principles selection and design of mid-IR nonlinear optical halide crystals. J. Mater. Chem. C 2013, 1, 7363–7370. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys. Condens. Mat. 2002, 14, 2717. [Google Scholar] [CrossRef]
- Wu, Q.; Meng, X.; Zhong, C.; Chen, X.; Qin, J. Rb2CdBr2I2: A new IR nonlinear optical material with a large laser damage threshold. J. Am. Chem. Soc. 2014, 136, 5683–5686. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hu, C.; Mutailipu, M.; Sun, Y.; Wu, K.; Zhang, M.; Pan, S. Oxyhalides: Prospecting ore for optical functional materials with large laser damage thresholds. J. Mater. Chem. C 2018, 6, 2435–2442. [Google Scholar] [CrossRef]
- Mao, F.F.; Hu, C.L.; Chen, J.; Mao, J.G. A series of mixed-metal germanium iodates as second-order nonlinear optical materials. Chem. Mater. 2018, 30, 2443–2452. [Google Scholar] [CrossRef]
- Chen, C.; Lin, Z.; Wang, Z. The development of new borate-based UV nonlinear optical crystals. Appl. Phys. B Lasers Opt. 2005, 80, 1–25. [Google Scholar] [CrossRef]
- Halasyamani, P.S. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Cheminform 2004, 35, 73–85. [Google Scholar] [CrossRef]
- Bersuker, I.B. The Jahn-Teller Effect. J. Lumin. 1984, 31, 29–36. [Google Scholar]
- Bersuker, I.B. Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chem. Rev. 2001, 101, 1067–1114. [Google Scholar] [CrossRef] [PubMed]
- Halasyamani, P.S.; Poeppelmeier, K.R. Noncentrosymmetric Oxides. Chem. Mater. 1998, 10, 2753–2769. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhang, Z.H.; Tao, X.T. Research advances of novel nonlinear optical crystals based on second-order Jahn-Teller effects(SOJT). J. Shandong Univ. 2011, 46, 99–120. [Google Scholar]
- Ok, K.M.; Halasyamani, P.S. New d0 transition metal iodates: Synthesis, structure, and characterization of BaTi(IO3)6, LaTiO(IO3)5, Ba2VO2(IO3)4‚(IO3), K2MoO2(IO3)4, and BaMoO2(IO3)4‚H2O. Inorg. Chem. 2005, 44, 2263–2271. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.P.; Hu, C.L.; Xu, X.; Sun, C.F.; Zhang, J.H.; Mao, J.G. NaVO2(IO3)2(H2O): A unique layered material produces a very strong shg response. Chem. Mater. 2010, 22, 1545–1550. [Google Scholar] [CrossRef]
- Milman, V.; Winkler, B.; White, J.A.; Pickard, C.J.; Payne, M.C.; Akhmatskaya, E.V.; Nobes, R.H. Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quantum Chem. 2015, 77, 895–910. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764. [Google Scholar] [CrossRef]
- Morris, A.J.; Nicholls, R.J.; Pickard, C.J.; Yates, J.R. OptaDOS: A tool for obtaining density of states, core-level and optical spectra from electronic structure codes. Comput. Phys. Commun. 2014, 185, 1477–1485. [Google Scholar] [CrossRef]
- Geng, L.; Li, Q.; Meng, C.Y.; Dai, K.; Lu, H.Y.; Lin, C.S.; Cheng, W.D. BaBi(SeO3)2Cl: A new polar material showing high second-harmonic generation efficiency enhanced by constructive alignment of chloride ions. J. Mater. Chem. C 2015, 3, 12290–12296. [Google Scholar] [CrossRef]
- Milman, V.; Refson, K.; Clark, S.J.; Pickard, C.J.; Yates, J.R.; Gao, S.P.; Hasnip, P.J.; Probert, M.I.J.; Perlov, A.; Segall, M.D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J. Mol. Struct. Theochem. 2010, 954, 22–35. [Google Scholar] [CrossRef]
- Zhang, W.L.; Cheng, W.D.; Zhang, H.; Geng, L.; Lin, C.S.; He, Z.Z. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-Chromophore asymmetric structures. Cheminform 2010, 132, 1508–1509. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics; Elsevier: New York, NY USA, 1992. [Google Scholar]
- Kurtz, S.K.; Perry, T.T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798–3813. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.S.; Qteish, A.; Payne, M.C.; Heine, V.V. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B Condens. Mat. 1993, 47, 4174. [Google Scholar] [CrossRef]
- Jiang, X.; Kang, L.; Luo, S.; Gong, P.; Lee, M.H.; Lin, Z. Development of nonlinear optical materials promoted by density functional theory simulations. Int. J. Mod. Phys. B 2014, 28, 1430018. [Google Scholar] [CrossRef]
- Lin, Z.S.; Kang, L.; Zheng, T.; He, R.; Huang, H.; Chen, C.T. Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory. Comput. Mater. Sci. 2012, 60, 99–104. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Lin, Z.S.; Qin, J.G.; Chen, C.T. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2. Sci. Rep. 2013, 3, 1366. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Luo, S.Y.; Peng, G.; Ye, N.; Wu, Y.C.; Chen, C.T.; Lin, Z.S. First-Principles Design of a deep-ultraviolet nonlinear-optical crystal from KBe2BO3F2 to NH4Be2BO3F2. Inorg. Chem. 2015, 54, 10533–10535. [Google Scholar] [CrossRef] [PubMed]
- Garza, A.J.; Scuseria, G.E. Predicting band gaps with hybrid density functionals. J. Phys. Chem. Lett. 2016, 7, 4165–4170. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Maggard, P.A.; Nault, T.S.; Stern, C.L.; Poeppelmeier, K.R. Alignment of acentric MoO3F33− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl. J. Solid State Chem. 2003, 175, 27–33. [Google Scholar] [CrossRef]
- Izumi, H.K.; Kirsch, J.E.; Stern, C.L.; Poeppelmeier, K.R. Examining the out-of-center distortion in the [NbOF5]2− anion. Inorg. Chem. 2005, 44, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.F.; Hu, C.L.; Xu, X.; Yang, B.P.; Mao, J.G. Explorations of new second-order nonlinear optical materials in the potassium vanadyl iodate system. J. Am. Chem. Soc. 2011, 133, 5561–5572. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.C.; Kim, S.H.; Kang, M.O.; Halasyamani, P.S. New polar oxides: Synthesis, characterization, calculations, and structure−property relationships in RbSe2V3O12 and TlSe2V3O12. Chem. Mater. 2009, 21, 1654–1662. [Google Scholar]
- Sun, C.F.; Hu, T.; Xu, X.; Mao, J.G. Syntheses, crystal structures, and properties of three new lanthanum(III) vanadium iodates. Dalton T. 2010, 39, 7960–7967. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, T.; Hong, Y.C.; Baek, J.; Halasyamani, P.S. Two new noncentrosymmetric polar oxides: Synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5. Cheminform 2010, 38, 4710–4715. [Google Scholar] [CrossRef]
BaNbO(IO3)5 | Our Results | Reference | ||
---|---|---|---|---|
Lattice Parameter | a (Å) | 7.95 | – | 7.93exp |
b (Å) | 7.95 | – | 7.93exp | |
c (Å) | 23.90 | – | 24.08exp | |
α (°) | 136.09 | – | 136.46exp | |
β (°) | 136.09 | – | 136.46exp | |
γ (°) | 56.51 | – | 56.51exp | |
Eg (eV) | 3.55 | 2.55cal | 3.64exp | |
ε(0) | 4.51 | 4.50cal | – | |
∆n | 0.02 | 0.03cal | – | |
d11 at 1064 nm (×10−9 esu) | 18.66 | 19.80cal | 15.40exp |
SHG (×10−9 esu) | d11 | d12 | d13 | d15 | d24 | d33 |
---|---|---|---|---|---|---|
BaVO(IO3)5 | 23.24 | 23.42 | 22.05 | 22.64 | 23.03 | 21.23 |
BaNbO(IO3)5 | 18.66 | 18.39 | 17.97 | 18.31 | 18.18 | 17.60 |
BaTaO(IO3)5 | 17.02 | 16.58 | 16.26 | 16.64 | 16.19 | 15.85 |
Crystals | nx | ny | nz | ∆n |
BaVO(IO3)5 | 2.22 | 2.22 | 2.26 | 0.04 |
BaNbO(IO3)5 | 2.15 | 2.15 | 2.17 | 0.02 |
BaTaO(IO3)5 | 2.12 | 2.12 | 2.14 | 0.02 |
Parameters | BaVO(IO3)5 | BaNbO(IO3)5 | BaTaO(IO3)5 | |
---|---|---|---|---|
Bond lengths (Å) | M-O16 | 1.653 | 1.855 | 1.754 |
M-O6 | 1.936 | 2.093 | 1.958 | |
M-O7 | 1.866 | 2.063 | 1.924 | |
M-O10 | 1.981 | 2.106 | 1.954 | |
M-O13 | 1.891 | 2.069 | 1.924 | |
M-O2 | 2.470 | 2.381 | 2.342 | |
O-I1 | 1.833 | 1.844 | 1.840 | |
Bond angles (°) | O16-M-O2 | 169.52 | 170.58 | 170.98 |
O10-M-O7 | 156.25 | 156.44 | 156.33 | |
O6-M-O13 | 159.25 | 165.49 | 165.42 | |
Δd | 1.004 | 0.605 | 0.663 |
Groups | Dipole Moment (D) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X-Component | Y-Component | Z-Component | Total Magnitude | |||||||||
M = V | M = Nb | M = Ta | M = V | M = Nb | M = Ta | M = V | M = Nb | M = Ta | M = V | M = Nb | M = Ta | |
I(1)O3 | 0.28 | −0.34 | −0.56 | 7.50 | 7.36 | 7.40 | −11.11 | −11.35 | −11.31 | 13.40 | 13.53 | 13.53 |
I(2)O3 | −1.46 | −0.62 | −1.60 | −8.48 | −8.39 | −8.05 | −10.57 | −10.68 | −10.67 | 13.63 | 13.60 | 13.46 |
I(3)O3 | 8.36 | 7.77 | 7.38 | −6.95 | −6.70 | −7.51 | −8.14 | −8.51 | −8.15 | 13.59 | 13.33 | 13.32 |
I(4)O3 | −7.17 | −6.50 | −6.69 | 1.59 | 2.03 | 2.08 | −10.60 | −11.07 | −10.98 | 12.90 | 13.00 | 13.02 |
I(5)O3 | 7.92 | 7.53 | 7.74 | −9.82 | −9.94 | −9.92 | −3.84 | −3.73 | −3.98 | 13.19 | 13.01 | 13.19 |
MO6 | 7.32 | 6.37 | 5.92 | 7.73 | 6.44 | 5.79 | 20.65 | 13.98 | 11.68 | 23.23 | 16.66 | 14.32 |
NDM | 15.26 | 14.21 | 12.19 | −8.43 | −9.20 | −10.20 | −23.62 | −31.37 | −33.41 | 89.93 | 83.12 | 80.84 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cui, M.; Yan, H.; Yu, Y.; Li, M.; Li, X.; Chu, L.; Jiang, B.; Qin, M. Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5 (M = V, Ta) Predicted by First Principle Calculations. Materials 2018, 11, 1809. https://doi.org/10.3390/ma11101809
Li Y, Cui M, Yan H, Yu Y, Li M, Li X, Chu L, Jiang B, Qin M. Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5 (M = V, Ta) Predicted by First Principle Calculations. Materials. 2018; 11(10):1809. https://doi.org/10.3390/ma11101809
Chicago/Turabian StyleLi, Yingfeng, Mengqi Cui, Hejin Yan, Yangxin Yu, Meicheng Li, Xiang Li, Lihua Chu, Bing Jiang, and Mingde Qin. 2018. "Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5 (M = V, Ta) Predicted by First Principle Calculations" Materials 11, no. 10: 1809. https://doi.org/10.3390/ma11101809
APA StyleLi, Y., Cui, M., Yan, H., Yu, Y., Li, M., Li, X., Chu, L., Jiang, B., & Qin, M. (2018). Excellent Infrared Nonlinear Optical Crystals BaMO(IO3)5 (M = V, Ta) Predicted by First Principle Calculations. Materials, 11(10), 1809. https://doi.org/10.3390/ma11101809