

Supporting information

Excellent Infrared Nonlinear Optical Crystals BaMO(IO₃)₅(M = V, Ta) Predicted by First Principle Calculations

Yingfeng Li ^{1,*,+}, Mengqi Cui ^{1,2,+}, Hejin Yan ¹, Yang-Xin Yu ^{2,3,*}, Meicheng Li ¹, Xiang Li ¹, Lihua Chu ¹, Bing Jiang ¹ and Mingde Qin ⁴

- ¹ State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206, China; cmqroy@126.com (M.C.); li-bluesky@hotmail.com (H.Y.); mcli@ncepu.edu.cn (M.L.); 13051314181@163.com (X.L.); 51102229@ncepu.edu.cn (L.C.); mucaoshan@163.com (B.J.)
- ² Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- ⁴ Program of Materials Science and Engineering, University of California, San Diego, CA 92093, USA; mingdeqin2@gmail.com
- * Correspondence: liyingfeng@ncepu.edu.cn (Y.L.); yangxyu@mail.tsinghua.edu.cn (Y.Y.); Tel.: +86-10-61772332 (Y.L.); +86-10-62782558 (Y.Y.)
- [†] Contributed equally in this work

Received: 09 August 2018; Accepted: 18 September 2018; Published: date

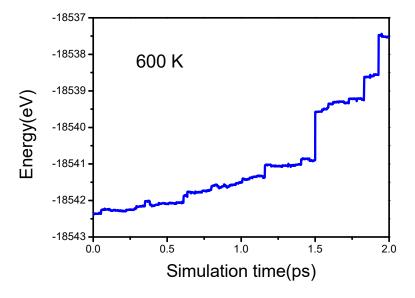


Figure S1. The energy evolution curves of the BaTaO(IO₃)₅ at 600 K during the dynamics simulation.

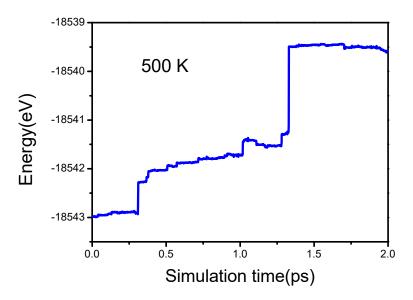


Figure S2. The energy evolution curves of the $BaTaO(IO_3)_5$ at 500 K during the dynamics simulation.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).