Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Structural Properties
3.2. Mechanical Properties
3.3. Electronic Properties
3.4. Elastic Anisotropy Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fang, C.M.; de Wijs, G.; Hintzen, H.T.; de With, G. Phonon spectrum and thermal properties of cubic Si3N4 from first-principles calculations. J. Appl. Phys. 2003, 93, 5175–5180. [Google Scholar] [CrossRef]
- Riley, F.L. Silicon Nitride and Related Materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Horvath-Bordon, E.; Riedel, R.; Zerr, A.; McMillan, P.F.; Auffermann, G.; Prots, Y.; Bronger, W.; Kniep, R.; Kroll, P. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 2006, 35, 987–1014. [Google Scholar] [CrossRef] [PubMed]
- Zerr, A.; Riedel, R.; Sekine, T.; Lowther, J.E.; Ching, W.Y.; Tanaka, I. Recent advances in new hard high-pressure nitrides. Adv. Mater. 2006, 18, 2933–2948. [Google Scholar] [CrossRef]
- Xu, B.; Dong, J.; McMillan, P.; Shebanova, O.; Salamat, A. Equilibrium and metastable phase transitions in silicon nitride at high pressure: A first-principles and experimental study. Phys. Rev. B 2011, 84, 014113. [Google Scholar] [CrossRef]
- Kuwabara, A.; Matsunaga, K.; Tanaka, I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs. Phys. Rev. B 2008, 78, 064104. [Google Scholar] [CrossRef]
- Zerr, A.; Kempf, M.; Schwarz, M.; Kroke, E.; Goken, M.; Riedel, R. Elastic Moduli and Hardness of Cubic Silicon Nitride. J. Am. Ceram. Soc. 2002, 85, 86–90. [Google Scholar] [CrossRef]
- Ching, W.; Mo, S.D.; Ouyang, L.Z.; Rulis, P. Theoretical prediction of the structure and properties of cubic spinel nitrides. J. Am. Ceram. Soc. 2002, 85, 75–80. [Google Scholar] [CrossRef]
- Weihrich, R.; Eyert, V.; Matar, S.F. Structure and electronic properties of new model dinitride systems: A density-functional study of CN2, SiN2, and GeN2. Chem. Phys. Lett. 2003, 373, 636–641. [Google Scholar] [CrossRef]
- Johnson, W.C. Nitrogen compounds of germanium I. the preparation and properties of germanic nitride. J. Am. Chem. Soc. 1930, 52, 5160–5165. [Google Scholar] [CrossRef]
- Salamat, A.; Woodhead, K.; McMillan, P.F.; Cabrera, R.Q.; Rahman, A.; Adriaens, D.; Corà, F.; Perrillat, J.P. Tetrahedrally bonded dense C2N3H with a defective wurtzite structure: X-ray diffraction and Raman scattering results at high pressure and ambient conditions. Phys. Rev. B 2009, 80, 397–403. [Google Scholar] [CrossRef]
- Manyali, G.S.; Warmbier, R.; Quandt, A. Computational study of the structural, electronic and optical properties of M2N2(NH): M = C, Si, Ge, Sn. Comput. Mater. Sci. 2013, 79, 710–714. [Google Scholar] [CrossRef]
- Yu, B.H.; Chen, D. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Phys. Sin. 2012, 19, 197102. [Google Scholar]
- Manyali, G.S.; Warmbier, R.; Quandt, A.; Lowther, J.E. Ab initio study of elastic properties of super hard and graphitic structures of C3N4. Comput. Mater. Sci. 2014, 69, 229–303. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. The mechanical and electronic properties of carbon-rich silicon carbide. Materials 2016, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; Chai, C.C.; Fan, Q.Y.; Yang, Y.T. Theoretical prediction of new C–Si alloys in C2/m-20 structure. Chin. Phys. B 2017, 26, 046101. [Google Scholar] [CrossRef]
- Wang, Q.K.; Chai, C.C.; Fan, Q.Y.; Yang, Y.T. Physical properties of C-Si alloys in C2/m structure. Commun. Theor. Phys. 2017, 68, 259–268. [Google Scholar] [CrossRef]
- Li, Q.; Liu, H.Y.; Zhou, D.; Zheng, W.T.; Wu, Z.J.; Ma, Y.M. A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2. Phys. Chem. Chem. Phys. 2012, 14, 13081–13087. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Bao, K.; Tian, F.B.; Meng, X.; Chen, C.B.; Dong, B.W.; Li, D.; Liu, B.B.; Cui, T. Cubic gauche-CN: A superhard metallic compound predicted via first-principles calculations. J. Chem. Phys. 2010, 133, 044512. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zhang, Q.; Yan, H.Y.; Zhang, M.G. Cubic C3N: A new superhard phase of carbon-rich nitride. Materials 2016, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Liu, H.Y.; Lei, W.W.; Tang, X.; Lu, J.; Liu, D.; Li, Y.W. Prediction of a Superhard Carbon-rich C-N Compound Comparable to Diamond. J. Phys. Chem. C 2015, 119, 28614–28619. [Google Scholar] [CrossRef]
- George, S.M.; Robert, W.; Alexander, Q. First-principles studies of the structural, electronic and optical properties of dinitrides CN2, SiN2 and GeN2. Comput. Mater. Sci. 2014, 95, 706–711. [Google Scholar]
- George, S.M.; Robert, W.; Alexander, Q. First-principles study of Si3N2. Comput. Mater. Sci. 2015, 96, 140–145. [Google Scholar]
- Luo, Y.S.; Cang, Y.P.; Chen, D. Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4: A first-principles study. Comput. Condens. Matter 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Khan, G.G.; Clark, S.J.; Bandyopadhyay, N.R. Electronic, mechanical and optical properties of Si3P4 and Ge3P4: An ab initio study. Int. J. Mod. Phys. B 2010, 28, 5487–5494. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, M.G.; Yan, H.Y. First-principles investigation of high pressure Pbca phase of carbon mononitride. Phys. Lett. A 2016, 380, 3217–3221. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principlesmethods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–568. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2006, 118, 8207–8215, Erratum in J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef]
- Khazaei, M.; Tripathi, M.N.; Kawazoe, Y. First-principles simulation of cyanogen under high pressure: Formation of paracyanogen and an insulating carbon nitride solid. Phys. Rev. B 2011, 83, 134111. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.Y.; Wei, Q.; Chai, C.C.; Yan, H.Y.; Zhang, M.G.; Lin, Z.Z.; Zhang, Z.X.; Zhang, J.Q.; Zhang, D.Y. Structural, mechanical, and electronic properties of P3m1-BCN. J. Phys. Chem. Solids 2015, 79, 89–96. [Google Scholar] [CrossRef]
- Xing, M.J.; Li, B.H.; Yu, Z.T.; Chen, Q. Monoclinic C2/m-20 carbon: A novel superhard sp3 carbon allotrope. RSC Adv. 2016, 6, 32740–32745. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Han, Z.; Liu, X.H.; Yu, X.H.; Wang, D.Y.; Tian, Y. Pnma-BN: Another Boron Nitride polymorph with interesting physical properties. Nanomaterials 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, M.L. Boron nitride theoretical hardness compared to carbon polymorphs. Diamond Relat. Mater. 2004, 13, 1848–1853. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014, 90, 224104. [Google Scholar] [CrossRef]
- Cang, Y.P.; Lian, S.B.; Yang, H.M.; Chen, D. Predicting physical properties of tetragonal, monoclinic and orthorhombic M3N4 (M = C, Si, Sn) polymorphs via first-principles calculations. Chin. Phys. Lett. 2016, 33, 066301. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, K.; Qi, B.Y. The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombicM3N4 (M = Si, Ge, Sn): A first-principles study. Chin. Phys. B. 2017, 26, 046303. [Google Scholar] [CrossRef]
- Pugh, S.F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Duan, Y.H.; Sun, Y.; Peng, M.J.; Zhou, S.G. Anisotropic elastic properties of the Ca–Pb compounds. J. Alloy. Compd. 2014, 595, 14–21. [Google Scholar] [CrossRef]
- Hao, Y.J.; Chen, X.R.; Cui, H.L.; Bai, Y.L. First-principles calculations of elastic constants of c-BN. Physica B 2006, 382, 118–122. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Wei, Q.; Yan, H.Y.; Zhang, M.G.; Zhang, Z.X.; Zhang, J.Q.; Zhang, D.Y. Elastic and electronic properties of Pbca-BN: First-principles calculations. Comput. Mater. Sci. 2014, 85, 80–87. [Google Scholar] [CrossRef]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Zhou, P.K.; Yang, Y.T. Elastic anisotropy and electronic properties of Si3N4 under pressures. AIP Adv. 2016, 6, 085207. [Google Scholar] [CrossRef]
- Marmier, A.; Lethbridge, Z.A.D.; Walton, R.I.; Smith, C.W.; Parker, S.C.; Evans, K.E. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 2010, 181, 2102–2115. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Zhang, H.R.; Zhang, G.T.; Wei, Q.; Yuan, Y.Q. First-principles investigation on elastic and thermodynamic properties of Pnnm-CN under high pressure. AIP Adv. 2016, 6, 125040. [Google Scholar] [CrossRef]
- Hu, W.C.; Liu, Y.; Li, D.J.; Zeng, X.Q.; Xu, C.S. First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput. Mater. Sci. 2014, 83, 27–34. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.Y.; Chai, C.C.; Wei, Q.; Yang, Y.T. Two novel C3N4 phases: Structural, mechanical and electronic properties. Materials 2016, 9, 427. [Google Scholar] [CrossRef] [PubMed]
Materials | PBE | PBEsol | CA-PZ | PBE + D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | a | b | c | a | b | c | a | b | c | |
CN | 5.504 | 4.395 | 4.041 | 5.461 | 4.384 | 4.029 | 5.402 | 4.352 | 3.998 | 5.484 | 4.385 | 4.029 |
5.514 1 | 4.396 | 4.041 | ||||||||||
5.514 2 | 4.396 | 4.041 | ||||||||||
SiN | 7.234 | 5.341 | 7.226 | 7.339 | 5.333 | 4.867 | 7.226 | 5.257 | 4.798 | 7.281 | 5.322 | 4.856 |
GeN | 7.831 | 5.645 | 7.578 | 7.823 | 5.625 | 5.136 | 7.578 | 5.488 | 5.011 | 7.744 | 5.610 | 5.129 |
c-BN | 3.626 | 3.612 | 3.569 | 3.600 | ||||||||
Diamond | 3.566 | 3.558 | 3.526 | 3.566 |
Materials | C11 | C12 | C13 | C22 | C23 | C33 | C44 | C55 | C66 | B | G | E | v |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CN | 491 | 169 | 139 | 922 | 122 | 1080 | 469 | 307 | 222 | 356 | 319 | 771 | 0.139 |
CN 1 | 495 | 174 | 145 | 934 | 124 | 1112 | 465 | 313 | 243 | 363 | 326 | 754 | 0.154 |
SiN | 221 | 107 | 88 | 367 | 90 | 422 | 150 | 75 | 81 | 170 | 104 | 257 | 0.243 |
SiN2 2 | 836 | 1269 | 397 | 313 | 407 | 386 | 879 | 0.140 | |||||
SiN2 3 | 442 | 75 | 58 | 610 | 133 | 133 | 237 | 76 | 71 | 191 | 138 | 333 | 0.200 |
Si3N2 4 | 261 | 97 | 68 | 152 | 73 | 190 | 0.290 | ||||||
o-Si3N4 5 | 581 | 181 | 55 | 587 | 132 | 483 | 244 | 88 | 197 | 262 | 179 | 436 | 0.221 |
t-Si3N4 5 | 277 | 152 | 145 | 312 | 178 | 207 | 194 | 126 | 311 | 0.233 | |||
m-Si3N4 5 | 241 | 39 | 139 | 457 | 55 | 358 | 88 | 128 | 86 | 165 | 104 | 259 | 0.239 |
GeN | 159 | 85 | 69 | 243 | 55 | 272 | 107 | 51 | 57 | 119 | 70 | 176 | 0.255 |
GeN2 3 | 260 | 40 | 22 | 350 | 94 | 145 | 138 | 45 | 44 | 119 | 85 | 205 | 0.210 |
o-Ge3N4 6 | 203 | 122 | 305 | 0.250 | |||||||||
t-Ge3N4 6 | 147 | 87 | 218 | 0.253 | |||||||||
m-Ge3N4 6 | 124 | 73 | 183 | 0.254 |
Materials | CN | SiN | GeN | |
---|---|---|---|---|
ρ | 3.536 | 2.922 | 5.039 | |
(100) | (100)vl | 11,784 | 8697 | 5617 |
(010)vtl | 7927 | 5265 | 3363 | |
(001)vt2 | 9318 | 5066 | 3181 | |
(010) | (010)vl | 16,148 | 11,207 | 6944 |
(100)vt1 | 7927 | 5265 | 3363 | |
(001)vt2 | 11,517 | 7165 | 4608 | |
(001) | (001)vl | 17,477 | 12,018 | 7347 |
(100)vt1 | 9318 | 5066 | 3181 | |
(010)vt2 | 11,517 | 7165 | 4608 | |
vl | 14,865 | 10,278 | 6491 | |
vt | 9498 | 5966 | 3727 | |
vm | 10,437 | 6620 | 4140 | |
ΘD | 1702 | 863 | 508 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Liu, X.; Yu, X.; Shi, C.; Wang, D. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. Materials 2017, 10, 912. https://doi.org/10.3390/ma10080912
Ma Z, Liu X, Yu X, Shi C, Wang D. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. Materials. 2017; 10(8):912. https://doi.org/10.3390/ma10080912
Chicago/Turabian StyleMa, Zhenyang, Xuhong Liu, Xinhai Yu, Chunlei Shi, and Dayun Wang. 2017. "Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations" Materials 10, no. 8: 912. https://doi.org/10.3390/ma10080912
APA StyleMa, Z., Liu, X., Yu, X., Shi, C., & Wang, D. (2017). Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations. Materials, 10(8), 912. https://doi.org/10.3390/ma10080912