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Abstract: The structural, mechanical, elastic anisotropic, and electronic properties of Pbca-XN
(X = C, Si, Ge) are investigated in this work using the Perdew–Burke–Ernzerhof (PBE) functional,
Perdew–Burke–Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by
Perdew and Zunger (CA–PZ) functional in the framework of density functional theory. The achieved
results for the lattice parameters and band gap of Pbca-CN with the PBE functional in this research
are in good accordance with other theoretical results. The band structures of Pbca-XN (X = C, Si, Ge)
show that Pbca-SiN and Pbca-GeN are both direct band gap semiconductor materials with a band gap
of 3.39 eV and 2.22 eV, respectively. Pbca-XN (X = C, Si, Ge) exhibits varying degrees of mechanical
anisotropic properties with respect to the Poisson’s ratio, bulk modulus, shear modulus, Young’s
modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca-CN/SiN/GeN
both exhibit greater elastic anisotropy in the bulk modulus and Young’s modulus than the (100) plane.

Keywords: C/Si/Ge-group-V compounds; electronic properties; mechanical properties;
anisotropic properties

1. Introduction

In the last few decades, nitride-based ceramics such as silicon nitride (Si3N4) have attracted
increasing attention from researchers in the ceramics, mechanical, and aerospace industries, as well
as in fields such as solar cells, as they have a wide range of applications [1–8]. This is due to their
significant chemical stability, good compression resistance, corrosion resistance, high hardness, good
mechanical properties, and good optical performance characteristics. Other stoichiometries like
Si3N4, SiN2, and Si2N2(NH) have also been proposed to exist [9–14]. Silicon and germanium-based
compounds and alloys such as the Si/Ge-group-III and Si/Ge-group-V compounds have been widely
investigated [15–17].

CxNy with different stoichiometries is often used as a potential superhard material [18–21].
Li et al. [18] have reported a novel body-centered tetragonal CN2 named bct-CN2, using the
newly-developed particle swarm optimization algorithm for crystal structure prediction. They found
that the hardness of bct-CN2 is 77.4 GPa, and it is an indirect wide gap semiconductor material with a
band gap of 3.6 eV. Wang et al. [19] suggested a new carbon nitride phase consisting of sp3 hybridized
bonds, with cubic symmetry and a P213 space group (i.e., cg-CN). Unlike most of the other superhard
materials that are insulators or semiconductors, it is a metallic compound, and its Vickers hardness is
82.56 GPa. They found that cg-CN is the most favorable stable crystal structure, with carbon nitride
with 1:1 stoichiometry. Using the particle swarm optimization technique, Wei et al. [20] proposed a
cubic superhard phase of C3N (c-C3N) with a Vickers hardness of 65 GPa, which is more energetically
favorable than the recently proposed o-C3N [21]. o-C3N was proposed by Hao et al. [21]. It has a C2221

phase, and its Vickers hardness is 76 GPa.
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CN2, SiN2, and GeN2 were proposed by Manyali et al. [22] using first-principles calculations;
they found that SiN2 and GeN2 both have mechanical stability, SiN2 and GeN2 are characterized
by an indirect band gap, and the optical spectra of GeN2 is within the solar spectrum for CN2 and
SiN2. The structural, elastic, electronic, and optical properties of Si3N2 [23] have been calculated
using density functional theory. First, Si3N2 has both mechanical and dynamical stability at ambient
pressure, and it is still stable at 10–20 GPa. The first-principles plane-wave pseudo-potential (PW-PP)
method was applied to investigate the mechanical properties, thermal properties, and phase transition
characters of Ge3N4 by Luo et al. [24]. The β→wII→γ phase transitions of Ge3N4 were also successfully
predicted by them; at 300 K, the calculated Pt of the β→wII transition is 10.7 GPa, and the calculated Pt

of the β→γ transition is 14.26 GPa at 1200 K. The bulk moduli of β-Ge3N4, wII-Ge3N4, and γ-Ge3N4

are 179 GPa, 187 GPa, and 220 GPa, respectively. Pseudocubic-Si3P4 and Ge3P4 [25] were proposed
by first-principles calculations for investigating the electronic, mechanical, and optical properties of
pseudocubic-Si3P4 and Ge3P4. The bulk modulus and shear modulus of pseudocubic-Si3P4 and Ge3P4

are 76 GPa and 58 GPa, and 60 GPa and 47 GPa, respectively. In addition, pseudocubic-Si3P4 and
Ge3P4 are both indirect and narrow band gap semiconductor materials, with band gaps of 0.24 eV and
0.13 eV, respectively.

Recently, Wei et al. [26] investigated the stability and electronic and mechanical properties of
Pbca-CN using first-principles calculations. The electronic properties and elastic anisotropy in bulk
modulus, shear modulus, and Poisson’s ratio of Pbca-CN are not fully represented. We proposed
Pbca-SiN and Pbca-GeN (space group: Pbca), which have a structure based on Pbca-CN, with
silicon atoms or germanium atoms substituting carbon atoms. In this work, the stability as well
as structural, mechanical, electronic, and elastic anisotropy properties of Pbca-XN (X = C, Si, Ge) were
systematically investigated.

2. Materials and Methods

The theoretical calculations were carried out using first-principles density functional theory
(DFT) [27,28]. The calculations were performed using the Cambridge Serial Total Energy
Package (CASTEP) code [29]. The generalized gradient approximation (GGA) parameterized by
Perdew–Burke–Ernzerhof (PBE) [30] functional, Perdew–Burke–Ernzerhof for solids (PBEsol) [31]
functional, and the local density approximation (LDA) parameterized by Ceperly and Alder,
parameterized by Perdew and Zunger (CA-PZ) [32,33] exchange-correlation functional were
employed for the self-consistent total energy calculations and geometry optimization. The C/Si/Ge:
2s22p2/3s23p2/4s24p2 and N: 2s22p3 electrons were explicitly treated as valence electrons. The energy
cutoff for the plane wave basis set was chosen to be 520/500/440 eV for CN/SiN/GeN in the Pbca
phase. The conjugate gradient method was used for the relaxation of structural parameters. The k-point
samplings with 2π× 0.025 Å−1 (7× 9× 10/5× 7× 8/5× 7× 8) in the Brillouin zone were performed
using the Monkhorst–Pack scheme [34] for CN/SiN/GeN in Pbca phase. The structural parameters
optimizations were determined using the Broyden–Fletcher–Goldfarb–Shenno (BFGS) algorithm [35],
with the flowing thresholds for converged structures: energy change less than 5 × 10−6 eV per
atom, residual force below 0.01 eV/Å, stress less than 0.02 GPa, and displacement of atoms during
the geometry optimization less than 0.0005 Å. The phonon frequencies were calculated using linear
response theory [36]. The electronic band structures of the CN/SiN/GeN in Pbca phase were calculated
utilizing the Heyd–Scuseria–Ernzerhof (HSE06) [37,38] hybrid functional.

3. Discussion

3.1. Structural Properties

In the newly-formed (Pbca phase) solid, all the nitrogen atoms have sp2 hybridizations and all
the carbon/silicon/germanium atoms have sp3 hybridization with their nearest neighboring N and
C/Si/Ge atoms. The crystal structures of CN/SiN/GeN in Pbca phase are shown in Figure 1a.
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The C/Si/Ge atoms and N atoms consist of zigzag six-membered rings and eight-membered
rings. The C/Si/Ge and N atoms are located at Wyckoff 8c (0.1396, 0.0722, 0.0205)/(0.1507, 0.0794,
0.0291)/(0.1476, 0.0769, 0.0310) and 8c (0.8154, 0.8661, 0.6318)/(0.8038, 0.8690, 0.6241)/(0.8093, 0.8725,
0.6197) sites in Pbca-CN/SiN/GeN, respectively. The crystal structures of CN/SiN/GeN in the
Pbca phase along the (001) direction and (010) direction are shown in Figure 1b,c, respectively.
The eight-membered rings are normal to the (001) direction in the structure of Pbca-CN/SiN/GeN,
and the six-membered rings are normal to the (010) direction. The optimal lattice parameters of
Pbca-CN/SiN/GeN, together with the previous results [27,39] of Pbca-CN are listed in Table 1.
The optimized lattice parameters are a = 5.504 Å, b = 4.395 Å, and c = 4.041Å, which are in excellent
agreement with [27,39]. In addition, taking into account the van der Waals forces, we also calculated
the lattice parameters of Pbca-CN/SiN/GeN and diamond, c-BN using the dispersion-corrected
Perdew–Burke–Ernzerhof (PBE + D) [40]. For diamond and c-BN, the theoretical results obtained
by the GGA-PBE level (diamond: 3.566 Å for PBE level, 3.526 Å for CA-PZ [41], experimental value
3.567 Å [42]; c-BN: 3.626 Å for PBE level, 3.569 Å for CA-PZ [43], experimental value 3.620 Å [44])
are closer to the experimental values; the obtained results of c-BN and diamond using PBE + D are
not much different from those obtained by PBE functional compared to corresponding experimental
values, so the results obtained by the GGA-PBE level are all used in our paper. The lattice parameters of
Pbca-XN with X changing from C to Ge are illustrated in Figure 2a. It is clear that the lattice parameters
of Pbca-XN increase with X changing from C to Ge. From CN to SiN, the lattice parameters increase
31.4%, 21.52%, and 20.7% for a, b, and c of SiN compared to CN, while the lattice parameters increase
8.25%, 5.69%, and 5.84% for a, b, and c of GeN compared to SiN, respectively. This is because the
average bond length of Si-N (1.751 Å) is much greater than that of the C–N bond (1.452 Å), and the
average bond length of Ge-N (1.871 Å) is slightly longer than that of the Si–N bond.
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Figure 1. The crystal structures of (a) CN/SiN/GeN in the Pbca phase; and CN/SiN/GeN in the Pbca
phase along the (b) (001) direction and (c) (010) direction. The blue and red spheres represent the N
atoms and C/Si/Ge atoms.
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Table 1. The lattice parameters (in Å) of Pbca-CN/SiN/GeN using different functionals.

Materials
PBE PBEsol CA-PZ PBE + D

a b c a b c a b c a b c

CN 5.504 4.395 4.041 5.461 4.384 4.029 5.402 4.352 3.998 5.484 4.385 4.029
5.514 1 4.396 4.041
5.514 2 4.396 4.041

SiN 7.234 5.341 7.226 7.339 5.333 4.867 7.226 5.257 4.798 7.281 5.322 4.856
GeN 7.831 5.645 7.578 7.823 5.625 5.136 7.578 5.488 5.011 7.744 5.610 5.129
c-BN 3.626 3.612 3.569 3.600

Diamond 3.566 3.558 3.526 3.566
1 Ref [26]; 2 Ref [39]. CA-PZ: Ceperly and Alder, parameterized by Perdew and Zunger; PBE:
Perdew–Burke–Ernzerhof; PBEsol: Perdew–Burke–Ernzerhof for solids.
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Figure 2. (a) Lattice parameters and (b) elastic moduli for Pbca-CN/SiN/GeN with PBE level. 

3.2. Mechanical Properties 

The calculated elastic constants and elastic moduli of CN/SiN/GeN in the Pbca phase are listed 
in Table 2. The calculated elastic constants and elastic modulus of Pbca-CN are excellent agreement 
with the previous report [26]. For an orthorhombic phase, the criteria of mechanical stability are [45]: 
Cii > 0, i = 1–6; C11C22 − C2 

12 > 0; C11C22C33 + 2C12C13C23 − C11C2 

23 − C22C2 

13 − C33C2 

13 > 0, where the Cij is elastic 
constant of the material. The mechanical stability of a phase can be confirmed by using the elastic 
constants. The SiN/GeN in the Pbca phase both satisfy the above mechanical stability criteria. The 
SiN/GeN in the Pbca phase show mechanical stability under ambient pressure. The phonon 
dispersion curve can show dynamic stability; the phonon dispersion curves of SiN/GeN in the Pbca 
phase are illustrated in Figure 3. There is no imaginary frequency in the Brillouin zone, which means 
SiN/GeN in the Pbca phase can be dynamically stable under ambient pressure. The elastic moduli of 
Pbca-XN with X changing from C to Ge are illustrated in Figure 2b. It is clear that the elastic moduli 
of Pbca-XN decrease with X changing from C to Ge. The elastic constants and elastic moduli of other 
SixNy compounds [22,46,47] are also listed in Table 2. The bulk modulus B of Pbca-SiN is slightly 
smaller than that of SiN2, o-Si3N4, and t-Si3N4, while it is slightly larger than Si3N2 and t-Si3N4. The 
shear modulus G and Young’s modulus E of Pbca-SiN are similar to the bulk modulus of Pbca-SiN. 
For Pbca-GeN, its bulk modulus is as large as that of GeN2. However, its shear modulus and Young’s 
modulus are slightly smaller than that of GeN2. 

Brittleness and ductility of materials are important properties in crystal physics and engineering 
sciences. Pugh [48] proposed the ratio of bulk to shear modulus (B/G) as an indication of ductile 
verses brittle characters. If B/G > 1.75, the material is characterized by a ductile manner; otherwise, 
the material has a brittle character. The Poisson’s ratio v is consistent with B/G, but refers to brittle 
compounds, usually with a small v (less than 0.26) [49]. The B/G ratio of Pbca-CN/SiN/GeN is 1.12 
(1.11 [26]), 1.63, and 1.70; it is revealed that Pbca-CN/SiN/GeN are all brittle materials, and Pbca-CN 
has the most brittleness. For Poisson’s ratio v, we obtained the same conclusion. 

Figure 2. (a) Lattice parameters and (b) elastic moduli for Pbca-CN/SiN/GeN with PBE level.

3.2. Mechanical Properties

The calculated elastic constants and elastic moduli of CN/SiN/GeN in the Pbca phase are listed
in Table 2. The calculated elastic constants and elastic modulus of Pbca-CN are excellent agreement
with the previous report [26]. For an orthorhombic phase, the criteria of mechanical stability are [45]:
Cii > 0, i = 1–6; C11C22 − C2

12 > 0; C11C22C33 + 2C12C13C23 − C11C2
23 − C22C2

13 − C33C2
13 > 0, where the

Cij is elastic constant of the material. The mechanical stability of a phase can be confirmed by using the
elastic constants. The SiN/GeN in the Pbca phase both satisfy the above mechanical stability criteria.
The SiN/GeN in the Pbca phase show mechanical stability under ambient pressure. The phonon
dispersion curve can show dynamic stability; the phonon dispersion curves of SiN/GeN in the Pbca
phase are illustrated in Figure 3. There is no imaginary frequency in the Brillouin zone, which means
SiN/GeN in the Pbca phase can be dynamically stable under ambient pressure. The elastic moduli of
Pbca-XN with X changing from C to Ge are illustrated in Figure 2b. It is clear that the elastic moduli of
Pbca-XN decrease with X changing from C to Ge. The elastic constants and elastic moduli of other SixNy

compounds [22,46,47] are also listed in Table 2. The bulk modulus B of Pbca-SiN is slightly smaller than
that of SiN2, o-Si3N4, and t-Si3N4, while it is slightly larger than Si3N2 and t-Si3N4. The shear modulus
G and Young’s modulus E of Pbca-SiN are similar to the bulk modulus of Pbca-SiN. For Pbca-GeN,
its bulk modulus is as large as that of GeN2. However, its shear modulus and Young’s modulus are
slightly smaller than that of GeN2.

Brittleness and ductility of materials are important properties in crystal physics and engineering
sciences. Pugh [48] proposed the ratio of bulk to shear modulus (B/G) as an indication of ductile
verses brittle characters. If B/G > 1.75, the material is characterized by a ductile manner; otherwise,
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the material has a brittle character. The Poisson’s ratio v is consistent with B/G, but refers to brittle
compounds, usually with a small v (less than 0.26) [49]. The B/G ratio of Pbca-CN/SiN/GeN is 1.12
(1.11 [26]), 1.63, and 1.70; it is revealed that Pbca-CN/SiN/GeN are all brittle materials, and Pbca-CN
has the most brittleness. For Poisson’s ratio v, we obtained the same conclusion.Materials 2017, 10, 912 5 of 14 
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Table 2. The calculated elastic constants Cij (in GPa) and bulk moduli B (in GPa), shear moduli G (in
GPa), Young’s moduli E (in GPa), and Poisson’s ratio v of Pbca-CN/SiN/GeN and other CxNy, SixNy,
and GexNy compounds with PBE level.

Materials C11 C12 C13 C22 C23 C33 C44 C55 C66 B G E v

CN 491 169 139 922 122 1080 469 307 222 356 319 771 0.139
CN 1 495 174 145 934 124 1112 465 313 243 363 326 754 0.154
SiN 221 107 88 367 90 422 150 75 81 170 104 257 0.243

SiN2
2 836 1269 397 313 407 386 879 0.140

SiN2
3 442 75 58 610 133 133 237 76 71 191 138 333 0.200

Si3N2
4 261 97 68 152 73 190 0.290

o-Si3N4
5 581 181 55 587 132 483 244 88 197 262 179 436 0.221

t-Si3N4
5 277 152 145 312 178 207 194 126 311 0.233

m-Si3N4
5 241 39 139 457 55 358 88 128 86 165 104 259 0.239

GeN 159 85 69 243 55 272 107 51 57 119 70 176 0.255
GeN2

3 260 40 22 350 94 145 138 45 44 119 85 205 0.210
o-Ge3N4

6 203 122 305 0.250
t-Ge3N4

6 147 87 218 0.253
m-Ge3N4

6 124 73 183 0.254
1 Ref [26]; 2 Ref [18]; 3 Ref [22]; 4 Ref [23]; 5 Ref [46]; 6 Ref [47].

The Debye temperature (ΘD) is a fundamental physical property, and correlates with many
physical properties of solids (e.g., specific heat and the thermal coefficient) [50]. Debye temperature
ΘD can be estimated by elastic moduli. The Debye temperature can be estimated from the average
sound velocity by the following equation based on elastic constant evaluations [51]: ΘD = (h/kB)
(3nρNA/4πM)1/3vm, where h is the Planck constant, kB is Boltzmann’s constant, n is the number
of atoms in the molecule, NA is the Avogadro number, M is the molecular weight, and ρ is the
density. The average sound velocity vm can be calculated as follows: vm = [(2/v3

t + 1/v3
1)/3]−1/3,

where vl = [(B + 4G/3)/ρ]1/2, and vt = (G/ρ)1/2, where B and G are bulk modulus and shear
modulus, vl is the longitudinal sound velocity, and vt is the transverse sound velocity. In addition,
we can obtain the sound velocity in the main directions of a material according to the elastic
constants. For the (001) propagation direction in orthorhombic symmetry, polarization direction
(001)vl = (C33/ρ)1/2, (100)vt1 = (C55/ρ)1/2, and (010)vt2 = (C44/ρ)1/2. For the (010) propagation direction,
polarization direction (010)vl = (C22/ρ)1/2, (100)vt1 = (C66/ρ)1/2, and (001)vt2 = (C44/ρ)1/2. For the
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(100) propagation direction, polarization direction (100)vl = (C11/ρ)1/2, (010)vt1 = (C66/ρ)1/2, and
(100)vt2 = (C55/ρ)1/2 [49,52].

The calculated results of Debye temperature, longitudinal sound velocity, and transverse sound
velocity of Pbca-XN (X = C, Si, Ge) are all listed in Table 3. The densities of Pbca-XN (X = C, Si, Ge)
are also listed in Table 3. For Pbca-XN (X = C, Si, Ge), in the (001) propagation direction, the (001)
polarization direction has the largest sound velocity. The longitudinal sound velocity in the (010)
propagation direction aligns with the (001) polarization direction, and the longitudinal sound velocity
in the (100) propagation direction aligns with the (010) polarization direction. The longitudinal sound
velocity is generally larger than the transverse sound velocity, mainly because the elastic constants
that determine the longitudinal sound velocity are greater than those of the transverse sound velocity.
In addition, for the same the propagation direction and polarization direction, the sound velocity
decreases with X changing from C to Ge. Furthermore, the Debye temperature of Pbca-XN (X = C, Si,
Ge) decreases with X changing from C to Ge. For Pbca-SiN, the Debye temperature is 863 K; it is slightly
smaller than that of m-Si3N4 (892 K), o-Si3N4 (1107 K), and t-Si3N4 (949 K) [53]. The longitudinal
sound velocity and transverse sound velocity of Pbca-XN (X = C, Si, Ge) are different along different
directions; this shows that the sound velocity of Pbca-XN (X = C, Si, Ge) is also anisotropic.

Table 3. The density (in g/cm3), sound velocities (in m/s), average sound velocity (in m/s), and the
Debye temperature (in K) for Pbca-CN/SiN/GeN with PBE level.

Materials CN SiN GeN

ρ 3.536 2.922 5.039
(100) (100)vl 11,784 8697 5617

(010)vtl 7927 5265 3363
(001)vt2 9318 5066 3181

(010) (010)vl 16,148 11,207 6944
(100)vt1 7927 5265 3363
(001)vt2 11,517 7165 4608

(001) (001)vl 17,477 12,018 7347
(100)vt1 9318 5066 3181
(010)vt2 11,517 7165 4608

vl 14,865 10,278 6491
vt 9498 5966 3727
vm 10,437 6620 4140
ΘD 1702 863 508

3.3. Electronic Properties

In solid-state physics and semiconductor physics, the band structure of a solid or a material
describes the energy that is forbidden or permitted by electrons. The band structure of a material
determines a variety of properties—especially its electronic and optical properties. It is known
that since the calculated band gap with DFT is usually underestimated by 30–50%, the band gap
should be greater than the calculated results with the PBE functional. Hence, the band structures
of Pbca-CN/SiN/GeN calculated utilizing the Heyd–Scuseria–Ernzerhof (HSE06) [37,38] hybrid
functional are shown in Figure 4a–c, respectively. The band gap of Pbca-CN is 5.41 eV within the
HSE06 hybrid functional and 3.96 eV within the PBE functional; the results of the PBE functional of
Pbca-CN are in excellent agreement with previous report [26]. The valence band maximum is located
at the G point in the Brillouin zone, whereas the conduction band minimum is located at the X point.
That is to say, Pbca-CN is an indirect semiconductor with a band gap of 3.94 eV. In contrast, the valence
band maximums of Pbca-SiN and Pbca-GeN are all located at the G point in the Brillouin zone; it is
shown that Pbca-SiN and Pbca-GeN are both direct semiconductors with band gaps of 3.39 eV and
2.22 eV, respectively. In addition, the Fermi level decreases as the carbon atoms change into silicon
atoms; the silicon atoms then change into germanium atoms, and the Fermi level also decreases.
Similar to the lattice constants and the elastic moduli, the Fermi level changes rapidly when the carbon
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atom is replaced by silicon atoms. The Fermi levels of Pbca-CN/SiN/GeN are 11.02 eV, 2.26 eV, and
0.01 eV, respectively.Materials 2017, 10, 912 7 of 14 

 

-4

-2

0

2

4

6

8

5.41 eV

E
ne

rg
y(

eV
)

G              Z         T              Y            S          X             U          R
(a) CN

-4

-2

0

2

4

6

E
n

er
gy

(e
V

)

G           Z      T            Y          S       X            U       R

3.39 eV

(b) SiN

-4

-2

0

2

4

6

 

E
n

er
gy

(e
V

)

G          Z        T           Y          S         X          U      R

2.22 eV

(c) GeN

Figure 4. The band structures of (a) Pbca-CN; (b) Pbca-SiN; and (c) Pbca-CN GeN with the Heyd–
Scuseria–Ernzerhof (HSE06) hybrid functional with PBE level. 
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Figure 4. The band structures of (a) Pbca-CN; (b) Pbca-SiN; and (c) Pbca-CN GeN with the
Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional with PBE level.

3.4. Elastic Anisotropy Properties

The elastic anisotropy properties are an important characteristic of materials. Along the different
crystallographic directions, various elastic moduli exhibit different values. In this work, we mainly
investigated the anisotropy of Poisson’s ratio v, shear modulus, bulk modulus, and Young’s modulus
in different planes and different directions. The Poisson's ratio v and shear modulus G have two
unit vectors (a, b) and three angles [43,54], so they have a maximum value and a minimum value in
the same direction, while the Young's modulus has only two unit vectors (a, b) and a two-angle
description [43,54], so it is in the same direction with only one value. The Poisson’s ratio v of
Pbca-CN/SiN/GeN in the (001) plane (namely the xy or ab plane), the (010) plane (namely the xz or
ac plane), and the (100) plane (namely the yz or bc plane) are displayed in Figure 5a–c, respectively.
The dashed line and solid line represent the maximum value and minimum value of Poisson’s ratio in
different directions in the (001) plane, (010) plane, and (100) plane; the cyan line, red line, and blue line
represent the Poisson’s ratio v of Pbca-CN/SiN/GeN in (001) plane, (010) plane, and (100) plane in
Figure 5, respectively. From Figure 5a–c, it is obvious that the Poisson’s ratio v of Pbca-CN/SiN/GeN
exhibits a larger anisotropy. In the (001), (010), and (100) plane, along almost all directions, the
Pbca-GeN exhibits the largest Poisson ratio. The positions of the maximum values are all located at
θ = 1.57, φ = 4.73 (more details see [43,54]) for Pbca-CN/SiN/GeN; the angles θ and φ are measured in
radians. The minimum values of Pbca-CN/SiN/GeN occupy the position θ = 2.33, φ = 1.87; θ = 1.46,
φ = 1.06; and θ = 0.83, φ = 4.73, respectively.

The shear moduli G of Pbca-CN/SiN/GeN in the (001), (010), and (100) planes are displayed
in Figure 6a–c, respectively. The cyan line, red line, and blue line represent the Poisson’s ratio
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v of Pbca-CN/SiN/GeN in Figure 6, and the dashed line and solid line represent the maximum
value and minimum value of the shear modulus, respectively. The maximum shear moduli G
of Pbca-CN/SiN/GeN are 469 GPa, 150 GPa, and 107 GPa, and the minimum shear moduli of
Pbca-CN/SiN/GeN are 379 GPa, 106 GPa and 74 GPa, respectively. From Figure 6a,c, with X change
from C to Ge, the shape of the minimum value for shear modulus is increasingly rounded in the (001)
plane and (100) plane, while in the (010) plane the shape of the minimum is closer to a square. The ratios
Gmax/Gmin of Pbca-CN/SiN/GeN are 1.24, 1.42, and 1.53; in other words, the elastic anisotropy in
shear modulus becomes larger and larger with X changing from C to Ge.
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and (c) (100) plane for Pbca-CN/SiN/GeN with PBE level. The cyan line, red line, and blue line
represent the Poisson’s ratio v of Pbca-CN/SiN/GeN, respectively.
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represent the Poisson’s ratio v of Pbca-CN/SiN/GeN, respectively.

Young’s modulus is a measure of the stiffness of a solid material. It is a mechanical property
of linear elastic solid materials. It defines the relationship between stress (force per unit area) and
strain (proportional deformation) in a material. To study the elastic anisotropy in more detail, a
variation of Young’s modulus with crystallographic direction is displayed in a three-dimensional
manner. The directional dependence of Young’s modulus E for orthorhombic crystal is [55]: E−1 = l41S11

+ l42S22 + l43S33 + 2l21l22S12 + 2l21l23S13 + 2l22l23S23 + l21l22S66 + l21l23S55 + l22l32S44, where l1, l2, and l3 are the direct
cosines of the [uvw] direction, and Sij refers to the elastic compliance constants. The three-dimensional
surface representations of Young’s modulus E for Pbca-CN/SiN/GeN are illustrated in Figure 7a–c.
For an isotropic system, the three-dimensional directional dependence exhibits a spherical shape.
If there is a deviation of degrees from the spherical shape, it reflects the material exhibiting elastic
anisotropy [56]. From Figure 7a–c, it is obvious that the shape of the three-dimensional directional
dependence does not exhibit a spherical shape, and the shapes of the three-dimensional directional
dependence for Pbca-CN/SiN/GeN all exhibit mechanical anisotropy in Young’s modulus.

To further understand the elastic anisotropy of the Young’s modulus along different directions,
the dependence of the Young’s modulus on orientation is investigated when we take the tensile
axis within a given plane. Let α be the angle of between (100) and (uv0) for the (001) plane; the
Young’s modulus between (100) and (uv0) for the (001) plane can be expressed as: E−1 = S11cos4α

+ S22sin4α + 2S12sin2αcos2α + S66sin2αcos2α. Let β be the angle of between (001) and (u0w) for the
(010) plane; the Young’s modulus between (001) and (u0w) for the (010) plane can be calculated as:
E−1 = S11sin4β + S33cos4β + (2S13sin22β + S55sin22β)/4. Let γ be the angle of between (001) and (0vw)
for the (001) plane, the Young’s modulus between (001) and (0vw) for the (001) plane can be estimated
as: E−1 = S22sin4γ + S33cos4γ + (2S23sin22γ + S44sin22γ)/4. The two-dimensional representations
of Young’s modulus in the (001) plane, (010) plane, and (100) plane for Pbca-CN/SiN/GeN are
illustrated in Figure 7d–f, respectively. The cyan line, red line, and blue line represent the Poisson’s
ratio v of Pbca-CN/SiN/GeN, respectively. From Figure 7d–f, the (001) plane and (010) plane of
Pbca-CN/SiN/GeN exhibit a larger elastic anisotropy in Young’s modulus than the (100) plane.
Pbca-CN has a maximum of Emax = 1034 GPa and a minimum of Emin = 447 GPa. The calculated
results of elastic anisotropy in Young’s modulus for Pbca-CN are in excellent agreement with [26].
Pbca-CN/SiN/GeN has a maximum of Emax = 380/241 GPa and a minimum of Emin = 179/120 GPa.
In order to quantify the elastic anisotropy, we introduce a ratio; that is, the ratio of the maximum
and minimum Young’s modulus (ratio Emax/Emin). The greater the ratio Emax/Emin, the greater the
maximum and minimum differences, and the greater the anisotropy of the material. Through the values
of the ratio Emax/Emin = 2.31, 2.12, and 2.01, it is shown that the elastic anisotropy in Young’s modulus
for Pbca-XN (X = C, Si, Ge) decreases with X changing from C to Ge. In addition, the maximum values
of Pbca-CN/SiN/GeN all occupy the position θ = 0, φ = 0; that is, the maximum values of Pbca-XN
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(X = C, Si, Ge) all occupy the z (c) axis, while the minimum values of Pbca-CN/SiN/GeN do not occupy
the same position (x (a) axis). The minimum value of Pbca-SiN is located at θ = 1.32, φ = 0, but the
minimum value of Pbca-CN/GeN occupies the position of θ = π/2, φ = 0. For the orthorhombic phase,
the dependence of the bulk modulus B along the crystallographic direction is expressed by: B−1 = (S11

+ S12 + S13)l1 + (S12 + S22 + S23)l2 + (S13 + S23 + S33)l3. The three-dimensional surface representations
of bulk modulus B for Pbca-CN/SiN/GeN are illustrated in Figure 8a–c. The anisotropy of the bulk
modulus of Pbca-XN (X = C, Si, Ge) is similar to that of Young’s modulus; the (001) plane and (010)
plane of Pbca-CN/SiN/GeN exhibit a larger elastic anisotropy in bulk modulus than the (100) plane.
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Figure 7. The surface constructions of Young’s modulus for (a) Pbca-CN; (b) Pbca-SiN; and (c) Pbca-GeN
with PBE level. Two-dimensional representation of Young’s modulus in the (d) (001) plane; (e) (010)
plane; and (f) (100) plane for Pbca-CN/SiN/GeN with PBE level. The cyan line, red line, and blue line
represent the Poisson’s ratio v of Pbca-CN/SiN/GeN, respectively.
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In addition, apart from the Poisson’s ratio, shear modulus, and Young’s modulus, there is 
another significant physical quantity which describes the elastic anisotropy of a material: the 
universal anisotropic index AU [57], which is defined as AU = 5GV/GR + BV/BR − 6, where G and B are 
the shear modulus and bulk modulus, and the subscripts V and R denote the Voigt and Reuss 
approximations, respectively. The calculated universal anisotropic indices of Pbca-XN (X = C, Si, Ge) 
are 0.717, 0.671, and 0.662, respectively. The elastic anisotropy in the universal anisotropic index AU 
of Pbca-XN (X = C, Si, Ge) is similar to the bulk modulus, Young’s modulus, and shear modulus; it 
also decreases with X changing from C to Ge. Furthermore, for Pbca-CN, the universal anisotropic 
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In addition, apart from the Poisson’s ratio, shear modulus, and Young’s modulus, there is
another significant physical quantity which describes the elastic anisotropy of a material: the universal
anisotropic index AU [57], which is defined as AU = 5GV/GR + BV/BR − 6, where G and B are the shear
modulus and bulk modulus, and the subscripts V and R denote the Voigt and Reuss approximations,
respectively. The calculated universal anisotropic indices of Pbca-XN (X = C, Si, Ge) are 0.717, 0.671,
and 0.662, respectively. The elastic anisotropy in the universal anisotropic index AU of Pbca-XN (X = C,
Si, Ge) is similar to the bulk modulus, Young’s modulus, and shear modulus; it also decreases with X
changing from C to Ge. Furthermore, for Pbca-CN, the universal anisotropic index is slightly smaller
than that of m-C3N4 (0.798 [58]), while it is much higher than that of t-C3N4 (0.305 [58]). The universal
anisotropic index of Pbca-SiN is slightly larger than that of o-Si3N4 (0.582 [49]), but it is smaller than
that of m-Si3N4 (0.968) and t-Si3N4 (1.231) [49].

4. Conclusions

The structural, mechanical, electronic, and elastic anisotropy properties of CN, SiN, and GeN
in orthorhombic phase were performed using DFT calculations in this work. SiN and GeN are
mechanically and dynamically stable, fulfilling the Born stability criteria for an orthorhombic phase
and phonon spectra, respectively. PBE function predicts lattice parameters that agree well with the
previous report. From band gap calculations with the HSE06 function, SiN and GeN are direct band
gap semiconductor materials with band gap of 3.39 eV and 2.22 eV, while CN has an indirect band
gap with band gap of 5.41 eV. The elastic moduli of Pbca-XN (X = C, Si, Ge) such as Young’s moduli,
bulk moduli, shear moduli, Poisson’s ratio, and sound velocities have also been reported in this
work. The Debye temperature, longitudinal sound velocities, and transverse sound velocities are also
estimated using the elastic constants. The elastic anisotropy calculations showed that Pbca-XN (X = C,
Si, Ge) exhibited anisotropy in bulk modulus, shear modulus, Poisson’s ratio, Young’s modulus, and
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AU. Besides, the elastic anisotropy in bulk modulus, shear modulus, Poisson’s ratio, Young’s modulus,
and AU for Pbca-XN (X = C, Si, Ge) decreases with X changing from C to Ge.
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