Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of High-Molecular-Weight Gelatin-MA (HGM) and Gelatin-IA (HGI) Crosslinkers and Hydrogels
2.2. Characterization of High-Molecular-Weight Gelatin-IA (HGI) and Low-Molecular-Weight Gelatin-IA (LGI) Crosslinkers and Hydrogels
3. Materials and Methods
3.1. Fabrication of High-Molecular-Weight Gelatin-MA (HGM) and Gelatin-IA (HGI), and Low-Molecular-Weight Gelatin-IA (LGI) Crosslinkers
3.2. Fabrication of HGM, HGI, and LGI Hydrogels
3.3. Characterization of HGM, HGI, and LGI Crosslinkers and Hydrogels
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yue, K.; Trujillo-de Santiago, G.; Alvarez, M.M.; Tamayol, A.; Annabi, N.; Khademhosseini, A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015, 73, 254–271. [Google Scholar] [CrossRef] [PubMed]
- Annabi, N.; Tamayol, A.; Uquillas, J.A.; Akbari, M.; Bertassoni, L.E.; Cha, C.; Camci-Unal, G.; Dokmeci, M.R.; Peppas, N.A.; Khademhosseini, A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 2014, 26, 85–124. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.; Chen, J. Heat-set whey protein emulsion gels: Role of active and inactive filler particles. J. Dispers. Sci. Technol. 1999, 20, 197–213. [Google Scholar] [CrossRef]
- Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Control. Release 2005, 109, 256–274. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Li, D.; Wang, L.; Adhikari, B. Preparation of gelatin microparticles using water-in-water (w/w) emulsification technique. J. Food Eng. 2011, 103, 9–13. [Google Scholar] [CrossRef]
- Xiao, W.; He, J.; Nichol, J.W.; Wang, L.; Hutson, C.B.; Wang, B.; Du, Y.; Fan, H.; Khademhosseini, A. Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater. 2011, 7, 2384–2393. [Google Scholar] [CrossRef] [PubMed]
- Nichol, J.W.; Koshy, S.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544. [Google Scholar] [CrossRef] [PubMed]
- Aubin, H.; Nichol, J.W.; Hutson, C.B.; Bae, H.; Sieminski, A.L.; Cropek, D.M.; Akhyari, P.; Khademhosseini, A. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 2010, 31, 6941–6951. [Google Scholar] [CrossRef] [PubMed]
- Benton, J.A.; DeForest, C.A.; Vivekanandan, V.; Anseth, K.S. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 2009, 15, 3221–3230. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.C.; Yu, J.; Tsai, W.B. Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J. Mater. Chem. B 2016, 4, 2304–2313. [Google Scholar] [CrossRef]
- Begam, T.; Nagpal, A.K.; Singhal, R. A comparative study of swelling properties of hydrogels based on poly (acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks. J. Appl. Polym. Sci. 2003, 89, 779–786. [Google Scholar] [CrossRef]
- Mohammad, S.; Heidari, B. Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pH-responsiveness properties. Materials 2011, 4, 543–552. [Google Scholar]
- Hosseinzadeh, H.; Abbasian, M.; Hassanzadeh, S. Synthesis, characterization and swelling behavior investigation of gelatin-g-poly(acrylic acid-co-itaconic acid). Iran. Chem. Commun. 2014, 2, 196–208. [Google Scholar]
- Lanthonga, P.; Nuisin, R.; Kiatkamjornwong, S. Directional breeding of high itaconic acid yielding strain of aspergillus terreus with a new plate technique. Carbohydr. Polym. 2006, 66, 229–245. [Google Scholar]
- Sharma, R.; Kalia, S.; Kaith, B.S.; Kumar, A.; Thakur, P.; Pathania, D.; Srivastava, M.K. Ggum-poly(Itaconic Acid) based superabsorbents via two step free radical aqueous polymerization for environmental and antibacterial applications. J. Polym. Environ. 2016, 24, 1–16. [Google Scholar] [CrossRef]
- Hoch, E.; Hirth, T.; Tovar, G.E.M.; Borchers, K. Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J. Mater. Chem. B 2013, 1, 5675–5685. [Google Scholar] [CrossRef]
- Wu, C.-S.; Liao, H.-T. A new biodegradable blends prepared from polylactide and hyaluronic acid. Polymer 2005, 46, 10017–10026. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Jahromi, P.E.; Seidi, F.; Salimi, H. Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels. Carbohydr. Polym. 2010, 79, 933–940. [Google Scholar] [CrossRef]
- Gomes, M.E.; Ribeiro, A.S.; Malafaya, P.B.; Reis, R.L.; Cunha, A.M. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: Morphology, mechanical and degradation behaviour. Biomaterials 2001, 22, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.N.; Birkinshaw, C. Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions. J. Appl. Polym. Sci. 2008, 109, 923–931. [Google Scholar] [CrossRef]
Abbreviation | Molecular Weight of Gelatin (Da) | Amount of MA or IA (mM) | Gelatin:MA or IA (Mole Ratio) |
---|---|---|---|
HG | 90,000 | - | - |
LG | 4800 | - | - |
HGM150 | 90,000 | 150 | 1:540 |
HGM450 | 90,000 | 450 | 1:1620 |
HGM750 | 90,000 | 750 | 1:2700 |
HGI150 | 90,000 | 150 | 1:540 |
HGI450 | 90,000 | 450 | 1:1620 |
HGL750 | 90,000 | 750 | 1:2700 |
LGI150 | 4800 | 150 | 1:30 |
LGI450 | 4800 | 450 | 1:90 |
LGI750 | 4800 | 750 | 1:150 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amonpattaratkit, P.; Khunmanee, S.; Kim, D.H.; Park, H. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels. Materials 2017, 10, 826. https://doi.org/10.3390/ma10070826
Amonpattaratkit P, Khunmanee S, Kim DH, Park H. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels. Materials. 2017; 10(7):826. https://doi.org/10.3390/ma10070826
Chicago/Turabian StyleAmonpattaratkit, Penphitcha, Sureerat Khunmanee, Dong Hyun Kim, and Hansoo Park. 2017. "Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels" Materials 10, no. 7: 826. https://doi.org/10.3390/ma10070826
APA StyleAmonpattaratkit, P., Khunmanee, S., Kim, D. H., & Park, H. (2017). Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels. Materials, 10(7), 826. https://doi.org/10.3390/ma10070826