Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation
Abstract
:1. Introduction
2. Results
2.1. R(T)
2.2. I–V Characteristics and Sliding Domains
2.3. Crack Formation in Switching VO2 Crystals
3. Discussion
4. Materials and Methods
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A.—NDR due to Self-Heating
References
- Hoschek, E.; Klemm, W. Weitere Beiträge zur Kenntnis der Vanadinoxyde. Zeitschrift für Anorganische und Allgemeine Chemie 1939, 242, 63–69. (In Germany) [Google Scholar] [CrossRef]
- Jaffray, J.; Dumas, A. J. Recherches Centre Natl. Recherches Sci. Labs. Bellevue (Paris) 5, 360 (1954).
- Morin, F.J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Bae, S.-H.; Lee, S.; Koo, H.; Lin, L.; Jo, B.H.; Park, C.; Wang, Z.L. The memristive properties of a single VO2 nanowire with switching controlled by self-heating. Adv. Mater. 2013, 25, 5098–5103. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Coy, J.M.; Kasirga, T.S.; Huang, C.; Fei, Z.; Hunter, S.; Cobden, D.H. Measurement of a solid-state triple point at the metal-insulator transition in VO2. Nature 2013, 500, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Budai, J.D.; Hong, J.; Manley, M.E.; Specht, E.D.; Li, C.W.; Tischler, J.Z.; Abernathy, D.L.; Said, A.H.; Leu, B.M.; Boatner, L.A.; et al. Metallization of vanadium dioxide driven by large phonon entropy. Nature 2014, 515, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Martens, K.; Jeong, J.W.; Aetukuri, N.; Rettner, C.; Shukla, N.; Freeman, E.; Esfahani, D.N.; Peeters, F.M.; Topuria, T.; Rice, P.M.; et al. Field effect and strongly localized carriers in the metal-insulator transition material VO2. Phys. Rev. Lett. 2015, 115, 196401–196406. [Google Scholar] [CrossRef] [PubMed]
- Brito, W.H.; Aguiar, M.C.O.; Haule, K.; Kotliar, G. Metal-insulator transition in VO2: A DFT + DMFT perspective. Phys. Rev. Lett. 2015. [Google Scholar] [CrossRef]
- Gray, A.X.; Jeong, J.; Aetukuri, N.P.; Granitzka, P.; Chen, Z.; Kukreja, R.; Higley, D.; Chase, T.; Reid, A.H.; Ohldag, H.; et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 2016, 116, 116403–116406. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yang, Y.; Hou, Y.; Travaglini, H.C.; Hellwig, L.; Hihath, S.; van Benthem, K.; Lee, K.; Liu, W.; Dong, Y. Efficient and hysteresis-free field effect modulation of ambipolarly doped vanadium dioxide nanowires. Phys. Rev. Appl. 2016. [Google Scholar] [CrossRef]
- Kumar, S.; Strachan, J.P.; Kilcoyne, A.L.D.; Tyliszczak, T.; Pickett, M.D.; Santori, C.; Gibson, G.; Williams, R.S. The phase transition in VO2 probed using x-ray, visible and infrared radiations. Appl. Phys. Lett. 2016, 108, 073102–073104. [Google Scholar] [CrossRef]
- Marezio, M.; McWhan, D.B.; Remeika, J.P.; Dernier, P.D. Structural aspects of the metal-insulator transitions in Cr-doped VO2. Phys. Rev. B 1972, 5, 2541–2551. [Google Scholar] [CrossRef]
- Verleur, H.W.; Barker, A.S., Jr.; Berglund, C.N. Optical properties of VO2 between 0.25 and 5 eV. Phys. Rev. 1968, 172, 788–798. [Google Scholar] [CrossRef]
- Fillingham, P.J. Domain structure and twinning in crystals of vanadium dioxide. J. Appl. Phys. 1967, 38, 4823–4829. [Google Scholar] [CrossRef]
- Mitsuishi, T. On the phase transformation of VO2. Jpn. J. Appl. Phys. 1967, 6, 1060–1071. [Google Scholar] [CrossRef]
- Fisher, B. Moving boundaries and travelling domains during switching of VO2 single crystals. J. Phys. C Solid State Phys. 1975, 8, 2072–2076. [Google Scholar] [CrossRef]
- Reikhtsam, G.A.; Slyshek, N.G.; Chudnovskii, F.A. Effects associated with passage of a current across boundary between semiconducting and metallic phases. Sov. Phys. Semicond. 1973, 6, 1906–1907. [Google Scholar]
- Fisher, B. Metal-semiconductor domain configurations during switching of VO2 single crystals. J. Phys. C Solid State Phys. 1976, 9, 1201–1209. [Google Scholar] [CrossRef]
- Fisher, B. Voltage oscillations in VO2 needles. J. Appl. Phys. 1978, 49, 5339–53341. [Google Scholar] [CrossRef]
- Fisher, B. Metallic and semiconducting domains in switching VO2 single crystals. J. Mag. Magn. Mater. 1978, 7, 326–328. [Google Scholar] [CrossRef]
- Gu, Q.; Falk, A.; Wu, J.; Ouyang, L.; Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1-xO2 Nanobeams. Nano Lett. 2007. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wang, Z.; Chen, W.; Cobden, D.H. New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. Lett. 2009, 4, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Tselev, A.; Budai, J.D.; Strelcov, E.; Tischler, J.Z.; Kolmakov, A.; Kalinin, S.V. Electromechanical actuation and current-induced metastable states in suspended single-crystalline VO2 nanoplatelets. Nano Lett. 2011, 11, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.B.; Wentzcovitch, R.M.; Schulz, W.W.; Canfield, P.C. Resistivity of the high-temperature metallic phase of VO2. Phys. Rev. B Condens. Matter 1993, 48, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Zylbersztejn, A.; Mott, N.F. Metal-insulator transition in vanadium dioxide. Phys. Rev. B 1975, 11, 4383–4395. [Google Scholar] [CrossRef]
- Berglund, C.N.; Guggenheim, H.J. Electronic properties of VO2 near the semiconductor-metal transition temperature. Phys. Rev. 1969, 185, 1022–1033. [Google Scholar] [CrossRef]
- Bongers, P.F. Anisotropy of the electrical conductivity of VO2 single crystal. Solid State Commun. 1965, 3, 275–277. [Google Scholar] [CrossRef]
- Jostmeier, T.; Zimmer, J.; Karl, H.; Krenner, H.J.; Betz, M. Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite. Appl. Phys. Lett. 2014. [Google Scholar] [CrossRef]
- Yang, Z.; Ko, C.; Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 2011, 41, 337–368. [Google Scholar] [CrossRef]
- Alexander, C.S.; Cao, G.; Dobrosavljevic, V.; McCall, S.; Crow, J.E.; Lochner, E.; Guertin, R.P. Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition. Phys. Rev. B 1999, 60, R8422–R8425. [Google Scholar] [CrossRef]
- Fisher, B.; Patlagan, L.; Chashka, K.B.; Makarov, C.; Reisner, G.M. V3O5: Insulator-metal transition and electric-field-induced resistive-switching. Appl. Phys. Lett. 2016, 109, 103501–103505. [Google Scholar] [CrossRef]
- Shang, T.T.; Liu, X.Y.; Gu, L. Interface of transition metal oxides at the atomic scale. Sci. China Phys. Mech. Astron. 2016. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, B.; Patlagan, L. Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation. Materials 2017, 10, 554. https://doi.org/10.3390/ma10050554
Fisher B, Patlagan L. Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation. Materials. 2017; 10(5):554. https://doi.org/10.3390/ma10050554
Chicago/Turabian StyleFisher, Bertina, and Larisa Patlagan. 2017. "Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation" Materials 10, no. 5: 554. https://doi.org/10.3390/ma10050554
APA StyleFisher, B., & Patlagan, L. (2017). Switching VO2 Single Crystals and Related Phenomena: Sliding Domains and Crack Formation. Materials, 10(5), 554. https://doi.org/10.3390/ma10050554