Effects of Pr6O11 Addition on the Acid Resistance of Ceramic Proppant
Abstract
:1. Introduction
2. Experimental Process
3. Results and Discussion
3.1. Acid Resistance of Proppant
3.2. Phase Analysis
3.3. Microstructure Analysis
4. Conclusions
- The introduction of Pr6O11 in the ACMS system will restrict grain size development and form a fine-grained structure with low porosity so that the dense microstructure can protect proppants from being corroded badly by acid solution.
- Adding Pr6O11 can change the type of phase, which turns Ca2Al2SiO7, in which acid resistance is poor, into CaAl12O19, which possesses better acid resistance, and enhances the acid resistance of the proppants.
- Pr6O11 can form a solid solution with Ca2Al2SiO7 and CaAl12O19. The acid resistance of CaAl12O19 improves with the increase of solid solubility. In contrast, the acid resistance of Ca2Al2SiO7 will decrease after Ca2Al2SiO7 forms a solid solution with Pr6O11.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aguilera, R.F.; Radetzki, M. The shale revolution: Global gas and oil markets under transformation. Miner. Econ. 2013, 26, 75–84. [Google Scholar] [CrossRef]
- Lee, D.S.; Herman, J.D.; Elsworth, D.; Kim, H.T.; Lee, H.S. A critical evaluation of unconventional gas recovery from the marcellus shale, northeastern United States. Ksce J. Civ. Eng. 2011, 15, 679–687. [Google Scholar] [CrossRef]
- McGlade, C.; Speirs, J.; Sorrell, S. Unconventional gas—A review of regional and global resource estimates. Energy 2013, 55, 571–584. [Google Scholar] [CrossRef]
- Kanevskaya, R.D.; Diyashev, I.R.; Nekipelov, Y.K. Application of hydraulic fracturing for oil production stimulation and oil recovery increase. Neft. Khoz. 2002, 96–100. [Google Scholar]
- Freeman, E.R.; Anschutz, D.A.; Renkes, J.J.; Milton-Tayler, D. Qualifying Proppant Performance. SPE Drill Complet. 2009, 24, 210–216. [Google Scholar] [CrossRef]
- Liang, F.; Sayed, M.; Al-Muntasheri, G.A.; Chang, F.F.; Li, L. A comprehensive review on proppant technologies. Petroleum 2016, 2, 26–39. [Google Scholar] [CrossRef]
- Rickards, A.R.; Brannon, H.D.; Wood, W.D.; Stephenson, C.J. High strength, ultralightweight proppant lends new dimensions to hydraulic fracturing applications. SPE Prod. Oper. 2006, 21, 212–221. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Li, Y. Preparation and characterization of low-density mullite-based ceramic proppant by a dynamic sintering method. Mater. Lett. 2015, 152, 72–75. [Google Scholar] [CrossRef]
- Gu, M.; Dao, E.; Mohanty, K.K. Investigation of ultra-light weight proppant application in shale fracturing. Fuel 2015, 150, 191–201. [Google Scholar] [CrossRef]
- Wu, T.; Wu, B.; Zhao, S. Acid resistance of silicon-free ceramic proppant. Mater. Lett. 2013, 92, 210–212. [Google Scholar] [CrossRef]
- Ćurković, L.; Jelača, M.F.; Kurajica, S. Corrosion behavior of alumina ceramics in aqueous HCl and H2SO4 solutions. Corros. Sci. 2008, 50, 872–878. [Google Scholar] [CrossRef]
- Wu, T.; Wu, B. Corrosion resistance of ceramic proppant in BaO–CaO–P2O5–Al2O3 system. Corros. Sci. 2012, 63, 399–403. [Google Scholar] [CrossRef]
- Fang, Q.; Sidky, P.S.; Hocking, M.G. The effect of corrosion and erosion on ceramic materials. Corros. Sci. 1997, 39, 511–527. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, J.; Wu, B. Effect of TiO2 content on the acid resistance of a ceramic proppant. Corros. Sci. 2015, 98, 716–724. [Google Scholar] [CrossRef]
- Yao, Y.; Li, C.; Wang, L.; Jiang, X.; Qiu, T. Mechanical behaviors of alumina ceramics doped with rare-earth oxides. Rare Met. 2010, 29, 456–459. [Google Scholar] [CrossRef]
- Asgian, M.I.; Cundall, P.A.; Brady, B.H. Mechanical Stability of Propped Hydraulic Fractures—A Numerical Study. J. Petrol. Technol. 1995, 47, 203–208. [Google Scholar] [CrossRef]
- Gidley, J.L.; Penny, G.S.; Mcdaniel, R.R. Effect of Proppant Failure and Fines Migration on Conductivity of Propped Fractures. SPE Prod. Facil. 1995, 10, 20–25. [Google Scholar] [CrossRef]
- Yao, Y.J.; Qiu, T.; Jiao, B.X. Effect of Y2O3 and Sm2O3 on Sintering and Mechanical Behaviors of Alumina Ceramics. J. Rare Earths 2004, 22. [Google Scholar]
Samples No. | Stoichiometry | Chemical Composition (wt %) | Acid Solubility wt % | |||
---|---|---|---|---|---|---|
Al2O3 | CaO | SiO2 | Pr6O11 | |||
1 | Ca2Al2SiO7 | 37.23 | 40.88 | 21.89 | 0 | 12.91 |
2 | Pr0.2Ca1.8Al2SiO7.17 | 34.36 | 33.95 | 20.21 | 11.48 | 42.47 |
3 | CaAl12O19 | 91.62 | 8.38 | 0 | 0 | 1.44 |
4 | Pr0.1Ca0.9Al12O19.08 | 90.08 | 7.41 | 0 | 2.51 | 0.82 |
5 | Pr0.2Ca0.8Al12O19.16 | 88.59 | 4.92 | 0 | 6.49 | 0.33 |
Sample Number | Chemical Composition (wt %) | Apparent Density g/cm3 | Acid Solubility wt % | Sintering Temperature °C | ||||
---|---|---|---|---|---|---|---|---|
Al2O3 | MgO | CaO | SiO2 | Pr6O11 | ||||
P0 | 90 | 3.33 | 3.33 | 3.34 | 0 | 3.67 | 0.51 | 1375 |
P0.1 | 89.9 | 3.33 | 3.33 | 3.34 | 0.1 | 3.64 | 0.46 | 1350 |
P1 | 89 | 3.33 | 3.33 | 3.34 | 1 | 3.61 | 0.45 | 1375 |
P3 | 86 | 3.33 | 3.33 | 3.34 | 3 | 3.44 | 0.67 | 1450 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, G.; Wu, B.; Wu, T. Effects of Pr6O11 Addition on the Acid Resistance of Ceramic Proppant. Materials 2017, 10, 427. https://doi.org/10.3390/ma10040427
Xiong G, Wu B, Wu T. Effects of Pr6O11 Addition on the Acid Resistance of Ceramic Proppant. Materials. 2017; 10(4):427. https://doi.org/10.3390/ma10040427
Chicago/Turabian StyleXiong, Guodong, Bolin Wu, and Tingting Wu. 2017. "Effects of Pr6O11 Addition on the Acid Resistance of Ceramic Proppant" Materials 10, no. 4: 427. https://doi.org/10.3390/ma10040427
APA StyleXiong, G., Wu, B., & Wu, T. (2017). Effects of Pr6O11 Addition on the Acid Resistance of Ceramic Proppant. Materials, 10(4), 427. https://doi.org/10.3390/ma10040427