Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges
Abstract
:1. Introduction
2. Corrosion Fatigue (CF) of Mg Alloys
2.1. CF of Al-Containing Mg Alloys
2.2. Corrosion Fatigue of Al-Free Mg Alloys
3. Recommendation to Further Work
- Although the effect of BSA as the most abundant protein in human blood plasma was investigated on the CF of Mg alloys by the authors [26], body plasma consists of a large amount of other organic compounds such as amino acids, glucose, fibrinogen [6,27]. Therefore, it is of utmost importance to pursue studies on the possible role of the combination of all organic elements on corrosion and corrosion-assisted cracking (including CF) of Mg alloys.
- As described earlier, body implants are subjected to acute and complex loading during service conditions. However, while running or jumping, significantly different loading characteristics are experienced by the medical implants. Therefore, it is necessary to carry out tests under specific loading patterns for a given temporary implant in the actual human body environment.
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Hu, T.; Chu, P.K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011, 7, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.H.; Hosseini, M.M.; Emami, M.J.; Foroughi, A.A. Metallic artifact in mri after removal of orthopedic implants. Eur. J. Radiol. 2012, 81, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Harandi, S.; Singh Raman, R.K. A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM 2015, 67, 1143–1153. [Google Scholar] [CrossRef]
- Singh Raman, R.K.; Jafari, S.; Harandi, S.E. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review. Eng. Fract. Mech. 2015, 137, 97–108. [Google Scholar] [CrossRef]
- Rimnac, C.M.; Wright, T.M.; Bartel, D.L.; Klein, R.W.; Petko, A.A. Failure of orthopedic implants: Three case histories. Mater. Charact. 1991, 26, 201–209. [Google Scholar] [CrossRef]
- Triantafyllidis, G.K.; Kazantzis, A.V.; Karageorgiou, K.T. Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence. Eng. Fail. Anal. 2007, 14, 1346–1350. [Google Scholar] [CrossRef]
- Amel-Farzad, H.; Peivandi, M.T.; Yusof-Sani, S.M.R. In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms. Eng. Fail. Anal. 2007, 14, 1205–1217. [Google Scholar] [CrossRef]
- Bobby Kannan, M.; Dietzel, W.; Blawert, C.; Atrens, A.; Lyon, P. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31a) compared with AZ80. Mater. Sci. Eng. A 2008, 480, 529–539. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Dietzel, W.; Shin, K.S. Stress corrosion cracking of new Mg-Zn-Mn wrought alloys containing Si. Corros. Sci. 2008, 50, 1505–1517. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Song, G.; Kainer, K.U. Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium. Mater. Sci. Eng. A 2008, 472, 97–106. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Raja, V.S.; Song, G.; Kainer, K.U. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys. Mater. Sci. Eng. A 2008, 488, 339–351. [Google Scholar] [CrossRef]
- Uematsu, Y.; Kakiuchi, T.; Nakajima, M. Stress corrosion cracking behavior of the wrought magnesium alloy AZ31 under controlled cathodic potentials. Mater. Sci. Eng. A 2012, 531, 171–177. [Google Scholar] [CrossRef]
- Makar, G.L.; Kruger, J.; Sieradzki, K. Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys. Corros. Sci. 1993, 34, 1311–1342. [Google Scholar] [CrossRef]
- Bobby Kannan, M.; Dietzel, W.; Raman, R.K.S.; Lyon, P. Hydrogen-induced-cracking in magnesium alloy under cathodic polarization. Scr. Mater. 2007, 57, 579–581. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Forbes, W.F.; Gentleman, J.F.; Maxwell, C.J. Concerning the role of aluminum in causing dementia. Exp. Gerontol. 1995, 30, 23–32. [Google Scholar] [CrossRef]
- Crapper, D.R.; Krishnan, S.S.; Quittkat, S. Aluminium, neurofibrillary degeneration and alzheimer’s disease. Brain 1976, 99, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.M.; Yeung, K.W.K.; Lam, K.O.; Tam, V.; Chu, P.K.; Luk, K.D.K.; Cheung, K.M.C. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010, 31, 2084–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, C.K.; Ip, W.Y. Theoretical risk assessment of magnesium alloys as degradable biomedical implants. Acta Biomater. 2010, 6, 1808–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.N.; Zhou, W.R.; Zheng, Y.F.; Cheng, Y.; Wei, S.C.; Zhong, S.P.; Xi, T.F.; Chen, L.J. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91d and WE43—in simulated body fluid. Acta Biomater. 2010, 6, 4605–4613. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Singh Raman, R.K.; Davies, C.H.J. Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng. Fract. Mech. 2015, 137, 2–11. [Google Scholar] [CrossRef]
- Choudhary, L.; Raman, R.K. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater. 2012, 8, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Atrens, A.; Liu, M.; Zainal Abidin, N.I. Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B 2011, 176, 1609–1636. [Google Scholar] [CrossRef]
- Harandi, S.E.; Raman, R.K.S. Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications. Eng. Fract. Mech. 2017. [Google Scholar] [CrossRef]
- Harandi, S.; Singh Raman, R.K. Appropriate mechanochemical conditions for corrosion-fatigue testing of magnesium alloys for temporary bioimplant applications. JOM 2015, 67, 1137–1142. [Google Scholar] [CrossRef]
- International Organization for Standardization. Biological Evaluation of Medical Devices; ISO: Genève, Switzerland, 1994; pp. 1–11. [Google Scholar]
- Witte, F.; Ulrich, H.; Rudert, M.; Willbold, E. Biodegradable magnesium scaffolds: Part 1: Appropriate inflammatory response. J. Biomed. Mater. Res. A 2007, 81, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Hassel, T.; Bach, F.-W.; Golovko, A.; Krause, C. Investigation of the mechanical properties and the corrosion behaviour of low alloyed magnesium-calcium alloys for use as absorbable biomaterial in the implant technique, magnesium technology in the global age. In Proceedings of the 45th Annual Conference of Metallurgists of CIM, Montreal, QC, Canada, 1–4 October 2006; pp. 359–370. [Google Scholar]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Avedesian, M.M.; Baker, H. Asm Specialty Handbook: Magnesium and Magnesium Alloys; ASM International: Geauga County, OH, USA, 1999; ISBN 978-0-87170-657-7. [Google Scholar]
- Zberg, B.; Uggowitzer, P.J.; Löffler, J.F. Mgznca glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 2009, 8, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.; Fischerauer, S.F.; Hanzi, A.C.; Uggowitzer, P.J.; Loffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Song, Y.; Zhao, C.; Zhang, X.; Xie, C.; Zhang, Y.; Tao, H.; He, Y.; Jiang, Y.; et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater. Sci. Eng. C 2009, 29, 1907–1912. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef]
- Gunde, P.; Hänzi, A.C.; Sologubenko, A.S.; Uggowitzer, P.J. High-strength magnesium alloys for degradable implant applications. Mater. Sci. Eng. A 2011, 528, 1047–1054. [Google Scholar] [CrossRef]
- Bian, D.; Zhou, W.; Liu, Y.; Li, N.; Zheng, Y.; Sun, Z. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Acta Biomater. 2016, 41, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Raman, R.K.S.; Davies, C.H.J.; Hofstetter, J.; Uggowitzer, P.J.; Löffler, J.F. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 2017, 65, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zheng, Y.; Zhong, S.; Xi, T.; Wang, J.; Wang, W. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials 2010, 31, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pang, S.; Liu, Y.; Liaw, P.K.; Zhang, T. In vitro investigation of Mg-Zn-Ca-Ag bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 2015, 427, 134–138. [Google Scholar] [CrossRef]
- Qin, F.; Xie, G.; Dan, Z.; Zhu, S.; Seki, I. Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys. Intermetallics 2013, 42, 9–13. [Google Scholar] [CrossRef]
- Hashimoto, K.; Habazaki, H.; Akiyama, E.; Yoshioka, H.; Kim, J.H.; Park, P.Y.; Kawashima, A.; Asami, K. Recent progress in corrosion-resistant new alloys prepared by sputter deposition. Sci. Rep. RITU A 1996, 42, 99–105. [Google Scholar]
- Wang, W.-H.; Dong, C.; Shek, C. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Scully, J.R.; Gebert, A.; Payer, J.H. Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 2007, 22, 302–313. [Google Scholar] [CrossRef]
- Gebert, A.; Wolff, U.; John, A.; Eckert, J.; Schultz, L. Stability of the bulk glass-forming mg 65 y 10 cu 25 alloy in aqueous electrolytes. Mater. Sci. Eng. A 2001, 299, 125–135. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Pang, S.; Liaw, P.K.; Zhang, T. Corrosion fatigue behavior of a mg-based bulk metallic glass in a simulated physiological environment. Intermetallics 2016, 73, 31–39. [Google Scholar] [CrossRef]
Element | Mg | Al | Zn | Mn | Cu | Fe | Ni | Si | Be | Y | RE | Zr | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AZ91D | Bal | 8.89 | 0.78 | 0.20 | 0.002 | 0.002 | <0.001 | <0.01 | <0.001 | - | - | - | [23] |
89.59 | 9.21 | 0.80 | 0.34 | - | - | - | 0.06 | - | - | - | - | [22] | |
WE43 | 91.35 | - | 0.20 | 0.13 | - | - | - | - | - | 4.16 | 3.80 | 0.36 | [22] |
Alloy | Fatigue Limit (MPa) | Number of Cycles (N) | The Testing Procedure and Test Conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Air | Medium | Air | Medium | Medium | pH Controller | Temperature (°C) | Loading | Stress Ratio | Frequency (Hz) | Ref. | |
AZ91D | 50 | 20 | 107 | 106 | SBF | Tris | 37 | Tension–compression | −1 | 10 | [22] |
AZ91D | 57 | 17 | 107 | 5 × 105 | m-SBF | HEPES | 37 | Tension–compression | −1 | 5 | [23] |
AZ91D | 142 | 101 | 106 | ~25 × 103 (In Hanks’ solution) | Hanks’ solution + BSA | Purging CO2 | 37 | Three-point bending | 0.1 | 1 | [26] |
104 (In Hanks’ solution + BSA) |
Alloy | Fatigue Limit (MPa) | Number of Cycles (N) | The Testing Procedure and Test Conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Air | Medium | Air | Medium | Medium | pH Controller | Temperature (°C) | Loading | Stress Ratio | Frequency (Hz) | Ref. | |
WE43 * | 110 | 40 | 107 | 107 | SBF | Tris | 37 | Tension–compression | −1 | 10 | [22] |
Mg-1Ca | ~90 | 70 | 4 × 106 | 4 × 106 | SBF | Tris | 37 | Tension–compression | −1 | 10 | [39] |
Mg–2Zn–0.2Ca | ~90 | 68 | 4 × 106 | 4 × 106 | SBF | Tris | 37 | Tension–compression | −1 | 10 | [39] |
Mg–1Zn–0.3Ca | ~106 (E325) | ~60 (E325) | 107 | 5 × 106 | m-SBF | HEPES | 37 | Tension–compression | −1 | 10 | [40] |
~81 (E400) | ~60 (E400) |
Alloy | Fatigue Strength (MPa) | The Testing Procedure Test Conditions | ||||||
---|---|---|---|---|---|---|---|---|
Air | Medium | Number of Cycles (N) | Medium | Loading | Stress Ratio | Frequency (Hz) | Ref. | |
Mg–Zn–Ca–Sr (Amorphous) | 370 | 150 | 107 | PBS | Compression–compression | 0.1 | 10 | [48] |
WE43 | 110 | 40 | 107 | SBF | Tension–compression | −1 | 10 | [22] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, R.K.S.; Harandi, S.E. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges. Materials 2017, 10, 1316. https://doi.org/10.3390/ma10111316
Raman RKS, Harandi SE. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges. Materials. 2017; 10(11):1316. https://doi.org/10.3390/ma10111316
Chicago/Turabian StyleRaman, R. K. Singh, and Shervin Eslami Harandi. 2017. "Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges" Materials 10, no. 11: 1316. https://doi.org/10.3390/ma10111316
APA StyleRaman, R. K. S., & Harandi, S. E. (2017). Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges. Materials, 10(11), 1316. https://doi.org/10.3390/ma10111316