Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments
Abstract
:1. Introduction
2. Results
2.1. Surface Structures
2.2. Zeta Potential
2.3. Apatite Formation
3. Discussion
4. Materials and Methods
4.1. Surface Treatments
4.2. Surface Analysis
4.2.1. Scanning Electron Microscopy
4.2.2. Energy Dispersive X-Ray Analysis and X-Ray Photoelectron Spectroscopy
4.2.3. Thin-Film X-Ray Diffraction
4.2.4. Radio Frequency (RF) Glow Discharge Optical Emission Spectroscopy
4.2.5. Zeta Potential Measurement
4.3. Soaking in a Simulated Body Fluid (SBF)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yan, W.Q.; Nakamura, T.; Kobayashi, M.; Kim, H.M.; Miyaji, F.; Kokubo, T. Bonding of chemically treated titanium implants to bone. J. Biomed. Mater. Res. 1997, 37, 267–275. [Google Scholar] [CrossRef]
- Hacking, S.A.; Tanzer, M.; Harvey, E.J.; Krygier, J.J.; Bobyn, J.D. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin. Orthop. Relat. Res. 2002, 405, 24–38. [Google Scholar] [CrossRef]
- Coelho, P.G.; Granjeiro, J.M.; Romanos, G.E.; Suzuki, M.; Silva, N.R.F.; Cardaropoli, G.; Thompson, V.P.; Lemons, J.E. Basic research methods and current trends of dental implant surfaces. J. Biomed. Mater. Res. 2009, 88B, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Pattanayak, D.K.; Yamaguchi, S.; Takadama, H.; Matsushita, T.; Kawai, T.; Takemoto, M.; Fujibayashi, S.; Nakamura, T. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J. R. Soc. Interface 2010, 7, S503. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Hayakawa, S.; Tsuru, K.; Osaka, A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 2002, 23, 1353–1357. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, Z.; Leng, Y. Biomimetic calcium phosphate coatings on nitric acid treated titanium surfaces. Mater. Sci. Eng. C 2007, 27, 700–708. [Google Scholar] [CrossRef]
- Wu, J.M.; Hayakawa, S.; Tsuru, K.; Osaka, A. Low temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J. Am. Ceram. Soc. 2004, 87, 1635–1642. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Hayashi, K.; Kitaoka, S. Enhanced apatite formation on Ti metal heated in PO2-controlled nitrogen atmosphere. Mater. Sci. Eng. C 2013, 33, 4155–4159. [Google Scholar] [CrossRef] [PubMed]
- Uetsuki, K.; Nakai, S.; Shirosaki, Y.; Hayakawa, S.; Osaka, A. Nucleation and growth of apatite on an anatase layer irradiated with UV light under different environmental conditions. J. Biomed. Mater. Res. Part A 2013, 101A, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, S.; Spriano, S.; Pan, G.; Venturello, A.; Bianchi, C.L.; Chiesa, R.; Faga, M.G.; Maina, G.; Verne, E. Surface modification of Ti–6Al–4V alloy for biomineralization and specific biological response: Part I, inorganic modification. J. Mater. Sci. Mater. Med. 2011, 22, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Mei, S.; Chu, P.K.; Zhang, Y.; Wu, Z. The influence of hierarchical hybrid micro/nano-textured titanium surface wih titania nanotubes on osteoblast functions. Biomaterials 2010, 31, 5072–5082. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, C.W.; Lim, Y.J. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J. Biomed. Mater. Res. A 2006, 79, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Hayashi, H.; Kameyama, T.; Hishida, M.; Nagai, K.; Teraoka, K.; Kato, K. Suppressed proliferation of mouse osteoblast-like cells by a rough-surfaced substrate leads to low differentiation and mineralization. Mater. Sci. Eng. C 2010, 30, 1–7. [Google Scholar] [CrossRef]
- Schwarts, Z.; Olivares-Navarrete, R.; Wieland, M.; Cochran, D.I.; Boyan, B.D. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces. Biomaterials 2009, 30, 3390–3396. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.-S.; Ren, L.F.; Wang, L.Z.; Lin, H.-S.; Wang, S.-B.; Tong, Y.-Q. H2O2/HCl and heat-treated Ti–6Al–4V stimulates pre-osteoblast proliferation and differentiation. Oral Surg. Oral Med. Oral Pahol. Oral Radiol. Endod. 2009, 108, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Miyaji, F.; Kim, H.M.; Nakamura, T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc. 1996, 79, 1127–1129. [Google Scholar] [CrossRef]
- Kizuki, T.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010, 6, 2836–2842. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, S.; Fujibayashi, S.; Kim, H.M.; Kokubo, T.; Nakamura, T. Biology of alkali- and heat-treated titanium implants. J. Biomed. Mater. Res. 2003, 67A, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Takadama, H.; Miyaji, F.; Kokubo, T.; Nishiguchi, S.; Nakamura, T. Formation of bioactive functionally graded structure on Ti–6Al–4V alloy by chemical surface treatment. J. Mater. Sci. Mater. Med. 2000, 11, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Takadama, H.; Kokubo, T.; Nishiguchi, S.; Nakamura, T. Formation of a bioactive graded surface structure on Ti–15Mo–5Zr–3Al alloy by chemical treatment. Biomaterials 2000, 21, 353–358. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Apatite-forming ability of Ti–15Zr–4Nb–4Ta alloy induced by calcium solution treatment. J. Mater. Sci. Mater. Med. 2010, 21, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Kizuki, T.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Formation of a bioactive calcium titanate layer on gum metal by chemical treatment. J. Mater. Sci. Mater. Med. 2012, 23, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.; Takemoto, M.; Saito, T.; Fujibayashi, S.; Neo, M.; Yamaguchi, S.; Kizuki, T.; Matsushita, T.; Niinomi, M.; Kokubo, T.; et al. Bone bonding bioactivity of Ti metal and Ti–Zr–Nb–Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments. Acta Biomater. 2011, 7, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Takemoto, M.; Fujibayashi, S.; Kawai, T.; Yamaguchi, S.; Kizuki, T.; Matsushita, T.; Kokubo, T.; Nakamura, T. Bone bonding ability of a chemically and thermally treated low elastic modulus Ti alloy: Gum metal. J. Mater. Sci. Mater. Med. 2014, 25, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Isaac, J.; Galtayries, A.; Kizuki, T.; Kokubo, T.; Berdal, A.; Sautier, J.M. Bioengineered titanium surfaces affect the gene-expression and phenotypic response of osteoprogenitor cells derived from mouse calvarial bones. ECM. 2010, 20, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Isaac, J.; Loty, S.; Hamdan, A.; Kokubo, T.; Kim, H.-M.; Berdal, A.; Sautier, J.M. Bone-like tissue formation on a biomimetic titanium surface in an explant model of osteoconduction. J. Biomed. Mater. Res. 2009, 89A, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Kizuki, T.; Takadama, H.; Matsushita, T.; Kokubo, T.; Unuma, H.; Nakamura, T. Apatite formation on surface titanate layer with different Na content on Ti metal. J. Ceram. Soc. Jpn. 2010, 9, 19–24. [Google Scholar] [CrossRef]
- Uchida, M.; Kim, H.M.; Kokubo, T.; Fujibayashi, S.; Nakamura, T. Effect of Water Treatment on the Apatite-Forming Ability of NaOH-Treated Titanium Metal. J. Biomed. Mater. Res. (Appl. Biomater.) 2002, 63, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, D.K.; Yamaguchi, S.; Matsushita, T.; Kokubo, T. Nanostructured positively charged bioactive TiO2 layer formed on Ti metal by NaOH, acid and heat treatments. J. Mater. Sci. Mater. Med. 2011, 22, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, S.; Nakamura, T.; Nishiguchi, S.; Tamura, J.; Uchida, M.; Kim, H.M.; Kokubo, T. Bioactive titanium: Effect of sodium removal on the bone-bonding ability of bioactive titanium prepared by alkali and heat treatment. J. Biomed. Mater. Res. 2001, 56, 562–570. [Google Scholar] [CrossRef]
- Takemoto, M.; Fujibayashi, S.; Neo, M.; Suzuki, J.; Matsushita, T.; Kokubo, T.; Nakamura, T. Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment. Biomaterials 2006, 27, 2682–2691. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Takadama, H.; Matsushita, T.; Nakamura, T.; Kokubo, T. Preparation of bioactive Ti–15Zr–4Nb–4Ta alloy from HCl and heat treatments after a NaOH treatment. J. Biomed. Mater. Res. Part A. 2011, 97A, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 2003, 9, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Archana, P.S.; Jose, R.; Jin, T.M.; Vijila, C.; Yusoff, M.M.; Ramakrishnaw, S. Structural and Electrical Properties of Nb-Doped Anatase TiO2 Nanowires by Electrospinning. J. Am. Ceram. Soc. 2010, 93, 4096–4102. [Google Scholar] [CrossRef]
- Avansi, W.; Arenal, R., Jr.; de Mendonça, V.R.; Ribeiro, C.; Longo, E. Vanadium-doped TiO2 anatase nanostructures: The role of V in solid solution formation and its effect on the optical properties. CrystEngComm 2014, 16, 5021–5027. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, W.; Liu, Y.; Wu, P. Magnetic and optical properties of Al-doped anatase TiO2 (101) surface from density functional theory. J. Mag. Magn. Mater. 2016, 404, 7–13. [Google Scholar] [CrossRef]
- Textor, M.; Sitting, C.; Franchiger, V.; Tosatti, S.; Brunette, D.M. Properties and biological significance of natural oxide films on titanium and its alloys. In Titanium in Medicine; Brunette, D.M., Tengrall, P., Textor, M., Thomsen, P., Eds.; Springer: New York, NY, USA, 2001; Chapter 7; pp. 172–230. ISBN 978-3-642-63119-1. [Google Scholar]
- Hook, M.S.; Hartley, P.G.; Thistlethwaite, P.J. Fabrication and characterization of spherical zirconia particles for direct force measurement using the atomic force microscope. Langmuir 1999, 15, 6220–6225. [Google Scholar] [CrossRef]
- Kosmulski, M. Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 1997, 13, 6315–6320. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5188-9. [Google Scholar]
- Fujibayashi, S.; Takemoto, M.; Neo, M.; Matsushita, T.; Kokubo, T.; Doi, K.; Ito, T.; Shimizu, A.; Nakamura, T. A novel synthetic material for spinal fusion: A prospective clinical trial of porous bioactive titanium metal for lumber interbody fusion. Eur. Spine J. 2011, 20, 1486–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Pattanayak, D.K.; Fukuda, A.; Matsushita, T.; Takemoto, M.; Fujibayashi, S.; Sasaki, K.; Nishida, N.; Nakamura, T.; Kokubo, T. Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. Acta Biomater. 2011, 7, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- | Element/at. % | Relative Ratio of M/Ti (M = Al, V) | |||||
---|---|---|---|---|---|---|---|
Treatment | O | Ti | Na | Al | V | Al/Ti | V/Ti |
Untreated | 66.1 | 28.9 | 0 | 4.7 | 0.3 | 0.161 | 0.009 |
MA | 67.4 | 27.6 | 0 | 4.5 | 0.5 | 0.161 | 0.018 |
MA-heat | 68.8 | 14.4 | 0 | 12.1 | 5.2 | 0.843 | 0.364 |
NaOH | 58.8 | 23.1 | 17.6 | 0.5 | 0 | 0.022 | 0 |
NaOH-HCl | 71.6 | 28.3 | 0 | 0 | 0 | 0 | 0 |
NaOH-HCl-heat | 71.4 | 27.9 | 0 | 0 | 0.6 | 0 | 0.022 |
- | Element/at. % | Relative Ratio of M/Ti (M = Mo, Zr, Al) | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatment | O | Ti | Na | Mo | Zr | Al | Mo/Ti | Zr/Ti | Al/Ti |
Untreated | 7.1 | 80.9 | 0 | 6.5 | 2.4 | 3.2 | 0.080 | 0.030 | 0.040 |
MA | 6.7 | 81.2 | 0 | 6.5 | 2.4 | 3.2 | 0.080 | 0.030 | 0.039 |
MA-heat | 25.7 | 68.4 | 0 | 3.2 | 1.1 | 1.6 | 0.047 | 0.016 | 0.023 |
NaOH | 61.9 | 31.5 | 6.6 | 0 | 0 | 0 | 0 | 0 | 0 |
NaOH-HCl | 61.3 | 35.2 | 0 | 1.7 | 1.0 | 0.8 | 0.048 | 0.028 | 0.023 |
NaOH-HCl-heat | 51.7 | 45.7 | 0 | 1.2 | 0.7 | 0.7 | 0.026 | 0.015 | 0.015 |
- | Element/at. % | Relative Ratio of M/Ti (M = Zr, Nb, Ta, Pd) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | O | Ti | Na | Zr | Nb | Ta | Pd | Zr/Ti | Nb/Ti | Ta/Ti | Pd/Ti |
Untreated | 7.6 | 83.4 | 0 | 7.4 | 2.2 | 0.8 | 0.3 | 0.089 | 0.026 | 0.010 | 0.004 |
MA | 28.6 | 53.7 | 0 | 8.0 | 6.0 | 2.9 | 0.8 | 0.149 | 0.112 | 0.054 | 0.015 |
MA-heat | 54.7 | 38.6 | 0 | 3.3 | 2.1 | 0.9 | 0.4 | 0.085 | 0.054 | 0.023 | 0.010 |
NaOH | 57.2 | 37.1 | 3.8 | 1.1 | 0.6 | 0.3 | 0.0 | 0.030 | 0.016 | 0.008 | 0 |
NaOH-HCl | 52.6 | 44.6 | 0 | 1.3 | 1.3 | 0.6 | 0.1 | 0.029 | 0.029 | 0.013 | 0.002 |
NaOH-HCl-heat | 56.3 | 42.6 | 0 | 1.8 | 1.0 | 0.4 | 0.1 | 0.042 | 0.023 | 0.009 | 0.002 |
Element/wt. % | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alloy | Ti | Al | V | Nb | Ta | Mo | Zr | Pd | Fe | O | C | N | H |
Ti–6Al–4V | Bal. | 6.18 | 4.27 | - | - | - | - | - | 0.21 | 0.18 | <0.002 | 0.005 | 0.002 |
Ti–15Mo–5Zr–3Al | Bal. | 3.01 | - | - | - | 14.76 | 4.85 | - | 0.03 | 0.12 | 0.003 | 0.005 | 0.032 |
Ti–15Zr–4Nb–4Ta | Bal. | - | - | 3.83 | 3.94 | - | 14.51 | 0.16 | - | 0.25 | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, S.; Hashimoto, H.; Nakai, R.; Takadama, H. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments. Materials 2017, 10, 1127. https://doi.org/10.3390/ma10101127
Yamaguchi S, Hashimoto H, Nakai R, Takadama H. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments. Materials. 2017; 10(10):1127. https://doi.org/10.3390/ma10101127
Chicago/Turabian StyleYamaguchi, Seiji, Hideki Hashimoto, Ryusuke Nakai, and Hiroaki Takadama. 2017. "Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments" Materials 10, no. 10: 1127. https://doi.org/10.3390/ma10101127
APA StyleYamaguchi, S., Hashimoto, H., Nakai, R., & Takadama, H. (2017). Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments. Materials, 10(10), 1127. https://doi.org/10.3390/ma10101127