Surface Rationality and Deep Mimicry: Regional Selection of Energy Priorities Under Smart Specialization 2021–2027
Abstract
1. Introduction
1.1. Conceptual Foundations: Portfolios, Capabilities and Energy Domains
1.2. The Two-Dimensional Challenge: Endowment and Selection
1.3. Research Questions and Hypotheses
1.3.1. RQ1: What Energy Capability Endowments Do Regions Possess, and How Do These Evolve over Time?
1.3.2. RQ2: How Do Regions’ Capability Endowments Shape Their Priority Selection Behavior?
1.4. Integrated Theoretical Framework and Contributions
2. Materials and Methods
2.1. Data and Topic Space Construction
2.1.1. Data Sources and Spatial Harmonization
2.1.2. Extracting Topics and Aligning Them to Regional Priorities
2.1.3. Regional Panel Construction
2.2. Mapping Regional Capability Endowments and Evolution (RQ1)
2.2.1. Pre-Policy Topic Shares
2.2.2. Topic Similarity Matrix
2.2.3. Relatedness Density
2.2.4. Definitions of Capability Endowment Tags
2.2.5. Portfolio Opportunity Index (POI)
2.2.6. Coverage Dynamics: Temporal Evolution of Capability Portfolios
2.3. Characterizing Priority Selection Behavior (RQ2)
2.3.1. Treatment Assignment and Priority Flags
2.3.2. Priority Positioning Tags
- Priorities that fall within the region’s IS potential (Inside Strength Selected, IS_selected):
- Priorities that fall within the region’s AF potential (Adjacent Frontier Selected, AF_selected):
- Priorities that fall outside both IS_potential and AF_potential, i.e., wishful thinking or distant exploration (Stretch_selected):
2.3.3. Selection Comfort-Zone Bias Index (SCZBI)
2.3.4. Selection Rates: Exploitation, Exploration and Stretch
2.3.5. Portfolio–Priority Concordance: Alignment and Wishful Gap
2.3.6. Opportunity Cost Index (OCI)
2.3.7. Strategic Archetype Classification
- High POI: (many inside strengths);
- Low POI: (few inside strengths, many adjacencies);
- High SCZBI: (comfort-zone bias);
- Low SCZBI: (frontier exploration).
- Strength Boosters (high POI, high SCZBI): Many existing IS and prioritize them. The process of deepening IS creates conditions that may lead to lock-in situations.
- Excelling Perfectionists (high POI, low SCZBI): Strong capability base but deliberately pursue AF. Optimal related variety strategy.
- Narrow Specialists (low POI, high SCZBI): Limited IS but select non-adjacent or overly ambitious IS.
- Explorers (low POI, low SCZBI): Limited existing IS but pursue AF. High-risk growth strategy requiring external support.
2.3.8. AI Tools
3. Results
3.1. Regional Capability Endowments and Evolution (RQ1)
3.1.1. Topic Similarity and Relatedness Structure
3.1.2. Distribution of Capability Endowments
3.1.3. Portfolio Dynamics in the Pre-Policy Period (2014–2020)
3.2. Priority Selection Behavior: Rational, Explorative or Mimicry? (RQ2)
3.2.1. Descriptive Overview of Selection Behavior
3.2.2. Strategic Archetype Classification
3.2.3. Testing Hypotheses on Selection Behavior
3.2.4. Spatial Patterns and Legacy Effects
4. Discussion and Conclusions
4.1. Key Findings and Contributions
4.2. Theoretical Implications: Reconceptualising Smart Specialization
4.3. Policy Implications: Rethinking Smart Specialization Design
4.4. Limitations and Boundary Conditions
4.5. Future Research Directions
4.6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schanes, K.; Jäger, J.; Drummond, P. Three Scenario Narratives for a Resource-Efficient and Low-Carbon Europe in 2050. Ecol. Econ. 2019, 155, 70–79. [Google Scholar] [CrossRef]
- DeCotis, P.A.; Cartwright, E.D. The Transition to a Low-Carbon Economy. Clim. Energy 2022, 39, 13–17. [Google Scholar] [CrossRef]
- Labianca, M.; Faccilongo, N.; Monarca, U.; Lombardi, M. A Location Model for the Agro-Biomethane Plants in Supporting the REPowerEU Energy Policy Program. Sustainability 2023, 16, 215. [Google Scholar] [CrossRef]
- Farole, T.; Rodríguez-Pose, A.; Storper, M. Cohesion Policy in the European Union: Growth, Geography, Institutions. JCMS J. Common Mark. Stud. 2011, 49, 1089–1111. [Google Scholar] [CrossRef]
- Cai, Y.; Etzkowitz, H. Theorizing the Triple Helix Model: Past, Present, and Future. Triple Helix J. 2020, 7, 189–226. [Google Scholar] [CrossRef]
- Boschma, R. Relatedness as Driver of Regional Diversification: A Research Agenda. Reg. Stud. 2017, 51, 351–364. [Google Scholar] [CrossRef]
- Careri, F.; Efthimiadis, T.; Masera, M. 2020–2022: Pivotal Years for European Energy Infrastructure. Energies 2022, 15, 1999. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Di Cataldo, M. Quality of Government and Innovative Performance in the Regions of Europe. J. Econ. Geogr. 2015, 15, 673–706. [Google Scholar] [CrossRef]
- Charron, N.; Lapuente, V.; Annoni, P. Measuring Quality of Government in EU Regions across Space and Time. Pap. Reg. Sci. 2019, 98, 1925–1953. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A. Innovation Prone and Innovation Averse Societies: Economic Performance in Europe. Growth Change 1999, 30, 75–105. [Google Scholar] [CrossRef]
- McCann, P.; Ortega-Argilés, R. The Early Experience of Smart Specialization Implementation in EU Cohesion Policy. Eur. Plan. Stud. 2016, 24, 1407–1427. [Google Scholar] [CrossRef]
- Gianelle, C.; Kyriakou, D.; McCann, P.; Morgan, K. Smart Specialisation on the Move: Reflections on Six Years of Implementation and Prospects for the Future. Reg. Stud. 2020, 54, 1323–1327. [Google Scholar] [CrossRef]
- Foray, D. From Smart Specialisation to Smart Specialisation Policy. Eur. J. Innov. Manag. 2014, 17, 492–507. [Google Scholar] [CrossRef]
- Foray, D.; David, P.A.; Hall, B. Smart Specialisation—The Concept. In Knowledge for Growth: Prospects for Science, Technology and Innovation; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- McCann, P.; Ortega-Argilés, R. Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. Reg. Stud. 2015, 49, 1291–1302. [Google Scholar] [CrossRef]
- Kroll, H. Efforts to Implement Smart Specialization in Practice—Leading Unlike Horses to the Water. Eur. Plan. Stud. 2015, 23, 2079–2098. [Google Scholar] [CrossRef]
- Capello, R.; Kroll, H. From Theory to Practice in Smart Specialization Strategy: Emerging Limits and Possible Future Trajectories. Eur. Plan. Stud. 2016, 24, 1393–1406. [Google Scholar] [CrossRef]
- Di Cataldo, M.; Monastiriotis, V.; Rodríguez-Pose, A. How ‘Smart’ Are Smart Specialization Strategies? JCMS J. Common Mark. Stud. 2022, 60, 1272–1298. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- Pylak, K.; Deegan, J.; Broekel, T. Smart Specialisation or Smart Following? A Study of Policy Mimicry in Priority Domain Selection. Reg. Stud. 2025, 59, 2429626. [Google Scholar] [CrossRef]
- Calvo-Gallardo, E.; Arranz, N.; Arróyabe, J.C.F. de Contribution of the Horizon2020 Program to the Research and Innovation Strategies for Smart Specialization in Coal Regions in Transition: The Spanish Case. Sustainability 2022, 14, 2065. [Google Scholar] [CrossRef]
- Geels, F.W. Technological Transitions as Evolutionary Reconfiguration Processes: A Multi-Level Perspective and a Case-Study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef]
- Geels, F.W. The Multi-Level Perspective on Sustainability Transitions: Responses to Seven Criticisms. Environ. Innov. Soc. Transit. 2011, 1, 24–40. [Google Scholar] [CrossRef]
- Pylak, K.; Pizoń, J.; Łazuka, E. Evolution of Regional Innovation Strategies Towards the Transition to Green Energy in Europe 2014–2027. Energies 2024, 17, 5669. [Google Scholar] [CrossRef]
- Neffke, F.; Henning, M.; Boschma, R. How Do Regions Diversify over Time? Industry Relatedness and the Development of New Growth Paths in Regions. Econ. Geogr. 2011, 87, 237–265. [Google Scholar] [CrossRef]
- Balland, P.-A.; Boschma, R.; Crespo, J.; Rigby, D. Smart Specialization Policy in the European Union: Relatedness, Knowledge Complexity and Regional Diversification. Reg. Stud. 2019, 53, 1252–1268. [Google Scholar] [CrossRef]
- Fritsch, M.; Kublina, S. Related Variety, Unrelated Variety and Regional Growth: The Role of Absorptive Capacity and Entrepreneurship. Reg. Stud. 2017, 52, 1360–1371. [Google Scholar] [CrossRef]
- Cohen, W.M.; Levinthal, D.A. Absorptive Capacity: A New Perspective on Learning and Innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Frenken, K.; Van Oort, F.; Verburg, T. Related Variety, Unrelated Variety and Regional Economic Growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef]
- Boschma, R.; Iammarino, S. Related Variety, Trade Linkages, and Regional Growth in Italy. Econ. Geogr. 2009, 85, 289–311. [Google Scholar] [CrossRef]
- Boschma, R.; Capone, G. Institutions and Diversification: Related versus Unrelated Diversification in a Varieties of Capitalism Framework. Res. Policy 2015, 44, 1902–1914. [Google Scholar] [CrossRef]
- Deegan, J.; Broekel, T.; Fitjar, R.D. Searching through the Haystack: The Relatedness and Complexity of Priorities in Smart Specialization Strategies. Econ. Geogr. 2021, 97, 497–520. [Google Scholar] [CrossRef]
- Asheim, B.; Smith, H.L.; Oughton, C. Regional Innovation Systems: Theory, Empirics and Policy. Reg. Stud. 2011, 45, 875–891. [Google Scholar] [CrossRef]
- Tödtling, F.; Asheim, B.; Boschma, R. Knowledge Sourcing, Innovation and Constructing Advantage in Regions of Europe. Eur. Urban Reg. Stud. 2013, 20, 161–169. [Google Scholar] [CrossRef]
- Hassink, R.; Gong, H. Six Critical Questions about Smart Specialization. Eur. Plan. Stud. 2019, 27, 2049–2065. [Google Scholar] [CrossRef]
- March, J.G. Exploration and Exploitation in Organizational Learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Pinheiro, F.L.; Hartmann, D.; Boschma, R.; Hidalgo, C.A. The Time and Frequency of Unrelated Diversification. Res. Policy 2021, 51, 104323. [Google Scholar] [CrossRef]
- Jacobs, J. The Economy of Cities; A Vintage book, V-584; Random House: New York, NY, USA, 1969; ISBN 978-0-394-42296-1. [Google Scholar]
- Foray, D. Smart Specialisation: Opportunities and Challenges for Regional Innovation Policy; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Priem, J.; Piwowar, H.; Orr, R. OpenAlex: A Fully-Open Index of Scholarly Works, Authors, Venues, Institutions, and Concepts. arXiv 2022, arXiv:2205.01833. [Google Scholar]
- Perianez Forte, I.; Marinelli, E.; Foray, D.; Edwards, J.; Pertoldi, M.; Morgan, K.; Mieszkowski, K.; Gomez Prieto, J.; Nauwelaers, C.; Rakhmatullin, R.; et al. Implementing Smart Specialisation Strategies: A Handbook; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Salton, G.; McGill, M.J. Introduction to Modern Information Retrieval; International student edition; McGraw-Hill: Columbus, OH, USA, 1983; ISBN 978-0-07-054484-0. [Google Scholar]
- Eck, N.J.V.; Waltman, L. How to Normalize Cooccurrence Data? An Analysis of Some Well-Known Similarity Measures. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1635–1651. [Google Scholar] [CrossRef]
- Hidalgo, C.A.; Klinger, B.; Barabasi, A.-L.; Hausmann, R. The Product Space Conditions the Development of Nations. Science 2007, 317, 482–487. [Google Scholar] [CrossRef]
- Boschma, R.; Balland, P.-A.; Kogler, D.F. Relatedness and Technological Change in Cities: The Rise and Fall of Technological Knowledge in US Metropolitan Areas from 1981 to 2010. Ind. Corp. Change 2015, 24, 223–250. [Google Scholar] [CrossRef]
- Balassa, B. Trade Liberalisation and “Revealed” Comparative Advantage. Manch. Sch. 1965, 33, 99–123. [Google Scholar] [CrossRef]
- Cha, S.-H. Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions. Int. J. Math. Model. Meth. Appl. Sci. 2007, 1, 300–307. [Google Scholar]
- Martin, R.; Sunley, P. Path Dependence and Regional Economic Evolution. J. Econ. Geogr. 2006, 6, 395–437. [Google Scholar] [CrossRef]
- Grillitsch, M.; Asheim, B.; Trippl, M. Unrelated Knowledge Combinations: The Unexplored Potential for Regional Industrial Path Development. Camb. J. Reg. Econ. Soc. 2018, 11, 257–274. [Google Scholar] [CrossRef]
- Grillitsch, M.; Hansen, T. Green Industry Development in Different Types of Regions. Eur. Plan. Stud. 2019, 27, 2163–2183. [Google Scholar] [CrossRef]










| Data Source | Type | Content Description | Coverage Period | Records (N) | Spatial Unit | Key Variables |
|---|---|---|---|---|---|---|
| OpenAlex | Publications | Scholarly works with institutional affiliations | 2014–2024 | 178,314 | Institution → NUTS-2 | Title, abstract, authors, affiliations |
| CORDIS | Projects | EU Framework Programme (H2020, Horizon Europe) | 2014–2025 | 3817 | Participant → NUTS-2 | Title, objective, participants, funding |
| Kohesio | Projects | EU Cohesion Policy projects | 2014–2025 | 112,519 | Beneficiary → NUTS-2 | Title, summary, beneficiaries, funding |
| Eye@RIS3 | Priorities | RIS3 priority descriptions | 2014–2020/2021–2027 | 470 (284 + 186) | NUTS-2 | Priority text, thematic codes, region |
| Number of Regions | Mean | SD | Min | Q25 | Median | Q75 | Max | Gini | Mean Number of IS | Mean Number of AF |
|---|---|---|---|---|---|---|---|---|---|---|
| 236 | 0.655 | 0.204 | 0.091 | 0.538 | 0.695 | 0.809 | 1 | 0.172 | 42 | 21.3 |
| POI Quartile | Number of Regions | Mean POI | SD POI | Mean Number of IS | Mean Number of AF | Mean Total |
|---|---|---|---|---|---|---|
| Q1 (Low POI) | 59 | 0.368 | 0.139 | 24.8 | 37.9 | 62.7 |
| Q2 | 60 | 0.620 | 0.044 | 38.2 | 23.4 | 61.6 |
| Q3 | 58 | 0.762 | 0.031 | 48.2 | 15.0 | 63.2 |
| Q4 (High POI) | 59 | 0.871 | 0.048 | 57.2 | 8.6 | 65.8 |
| Dependent Variable | Coverage (Fraction of IS + AF Potential with Substantial Activity) |
|---|---|
| Specification | Coverage~Year + Region FE, clustered SE (n = 235 regions) |
| Observations | 1608 region–year pairs |
| Year coefficient (β) | 0.00142 (SE: 0.00124) |
| t-statistic | 1.143 |
| p-value | 0.254 |
| Within R2 | 0.0012 |
| Adjusted R2 | 0.248 |
| Number of Regions | Metric | Mean | SD | Min | Q25 | Median | Q75 | Max |
|---|---|---|---|---|---|---|---|---|
| 182 | SCZBI | 0.231 | 0.399 | –1.000 | 0.000 | 0.232 | 0.500 | 1.000 |
| 182 | ER | 0.062 | 0.051 | 0.000 | 0.022 | 0.055 | 0.091 | 0.250 |
| 182 | ExR | 0.053 | 0.063 | 0.000 | 0.000 | 0.039 | 0.083 | 0.308 |
| 182 | SR | 0.403 | 0.293 | 0.000 | 0.186 | 0.375 | 0.571 | 1.000 |
| 182 | alignment | 0.102 | 0.103 | 0.000 | 0.007 | 0.078 | 0.160 | 0.365 |
| 182 | gap | 1.851 | 0.175 | 1.000 | 1.778 | 1.904 | 1.985 | 2.000 |
| 182 | OCI | 0.927 | 0.092 | 0.491 | 0.884 | 0.957 | 0.999 | 1.000 |
| Archetype | Number of Regions | Mean POI | Mean SCZBI | Mean ER | Mean ExR | Mean SR | Mean Alignment | Mean Gap | Mean Number of Priorities |
|---|---|---|---|---|---|---|---|---|---|
| Strength Boosters | 67 | 0.833 | 0.536 | 0.063 | 0.033 | 0.367 | 0.121 | 1.855 | 6.209 |
| Excelling Perfectionists | 25 | 0.787 | 0.060 | 0.036 | 0.083 | 0.637 | 0.060 | 1.904 | 6.680 |
| Narrow Specialists | 24 | 0.560 | 0.553 | 0.083 | 0.025 | 0.253 | 0.169 | 1.806 | 5.208 |
| Explorers | 66 | 0.480 | −0.131 | 0.063 | 0.072 | 0.406 | 0.074 | 1.844 | 6.667 |
| Term | Model 1 ER | Model 2 ExR | Model 3 SR |
|---|---|---|---|
| (Intercept) | 0.245 (0.128) | 0.238 (0.178) | 2.280 ** (0.851) |
| POI | 0.012 (0.022) | 0.018 (0.03) | 0.146 (0.145) |
| SR | −0.062 *** (0.012) | −0.054 ** (0.016) | not applicable |
| Legacy | 0.016 (0.013) | −0.004 (0.018) | 0.233 ** (0.086) |
| Logarithm of GDP per capita (in purchasing power standard) | −0.019 (0.013) | −0.020 (0.018) | −0.203 * (0.085) |
| Logarithm of population density | −0.006 (0.004) | −0.004 (0.005) | 0.043 (0.027) |
| GERD (as % of GDP) | −0.005 (0.003) | −0.01 * (0.005) | 0.017 (0.022) |
| Share of fossil fuels (country level) | 0.001 * (0.000) | 0.001 ** (0.000) | −0.005 ** (0.002) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pylak, K.; Gergont, A.; Gleń, P.; Hołownia, D. Surface Rationality and Deep Mimicry: Regional Selection of Energy Priorities Under Smart Specialization 2021–2027. Energies 2026, 19, 792. https://doi.org/10.3390/en19030792
Pylak K, Gergont A, Gleń P, Hołownia D. Surface Rationality and Deep Mimicry: Regional Selection of Energy Priorities Under Smart Specialization 2021–2027. Energies. 2026; 19(3):792. https://doi.org/10.3390/en19030792
Chicago/Turabian StylePylak, Korneliusz, Agnieszka Gergont, Piotr Gleń, and Damian Hołownia. 2026. "Surface Rationality and Deep Mimicry: Regional Selection of Energy Priorities Under Smart Specialization 2021–2027" Energies 19, no. 3: 792. https://doi.org/10.3390/en19030792
APA StylePylak, K., Gergont, A., Gleń, P., & Hołownia, D. (2026). Surface Rationality and Deep Mimicry: Regional Selection of Energy Priorities Under Smart Specialization 2021–2027. Energies, 19(3), 792. https://doi.org/10.3390/en19030792

