Recent Progress in Experimental Techniques for Thin Liquid Film Evaporation
Abstract
1. Introduction
2. Evaporation in Thin Liquid Films
2.1. Evaporation Mechanism
2.2. Wettability and Contact Angle
3. Static Thin Liquid Film Measurement
3.1. Liquid Film Thickness
3.2. Temperature Measurements
4. Falling Liquid Film Measurement
4.1. Falling Film Thickness
4.2. Temperature Measurement
4.3. Flow Mode Measurement
5. Conclusions and Prospects
5.1. Conclusions
5.2. Prospects
- (1)
- Synchronized Multi-Physics Diagnostics: The primary experimental challenge is to move beyond single-parameter measurements. Future experimental setups are suggested to focus on the simultaneous acquisition of film thickness, temperature fields (via dual-color LIF), and velocity profiles (via PIV/PTV) to validate coupled heat-mass transfer mechanisms.
- (2)
- Standardization of Protocols: There is a lack of unified criteria for benchmarking. The community should establish standardized definitions for critical phenomena, such as ‘dry spot onset’ and ‘film breakdown thresholds,’ to ensure data comparability across different studies.
- (3)
- Coupled Multi-Scale Modeling: To resolve the contact line singularity, modeling efforts are advised to shift from standalone simulations to hybrid MD-CFD frameworks. This coupling is essential to accurately predict dynamic wetting behaviors that continuum mechanics alone cannot resolve.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Q.; Zhi, G.; Zhou, S.; Dong, X.; Shen, Q.; Tao, R.; Qi, J. Advanced Design and Manufacturing Approaches for Structures with Enhanced Thermal Management Performance: A Review. Adv. Mater. Technol. 2024, 9, 2400263. [Google Scholar] [CrossRef]
- Ahmed, A.S.E. High-Performance Cooling of Power Semiconductor Devices Embedded in a Printed Circuit Board. Doctoral Dissertation, INSA De Lyon, Lyon, France, 2024. [Google Scholar]
- Liu, X.; Yang, J.; Zou, Q.; Hu, Y.; Li, P.; Tan, L.; Miljkovic, N. Enhancing Liquid—Vapor Phase-Change Heat Transfer with Micro/Nano-Structured Surfaces. ACS Nano 2025, 19, 9513–9589. [Google Scholar] [CrossRef] [PubMed]
- Ohadi, M.; Qi, J.; Lawler, J. Microscale Heat Transfer Fundamentals and Applications: Proceedings of the NATO Advanced Study Institute on Microscale Heat Transfer—Fundamentals and Applications in Biological and Microelectromechanical Systems Cesme-Izmir, Turkey 18–30 July 2004; Springer: Berlin/Heidelberg, Germany, 2005; pp. 321–338. [Google Scholar]
- Guo, Q.; Liu, H.L.; Xie, G.; Guo, C.; Xu, Z.; Shao, X.D. Investigation on the Two-Phase Flow and Heat Transfer Behaviors in a New Central Uniform Dispersion-Type Heat Exchanger. Int. Commun. Heat Mass Transf. 2022, 137, 106283. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M. A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers. Energies 2025, 18, 3587. [Google Scholar] [CrossRef]
- Yan, W.; Cui, X.; Meng, X.; Yang, C.; Zhang, Y.; Liu, Y.; An, H.; Jin, L. Multi-Objective Optimization of Hollow Fiber Membrane-Based Water Cooler for Enhanced Cooling Performance and Energy Efficiency. Renew. Energy 2024, 222, 119892. [Google Scholar] [CrossRef]
- Caliskan, T.D. Impact of Fluorinated Segment Chemistry on Film Wettability: Comparative Study of Short-Chain Perfluoroalkyl and Perfluoropolyether Structures. Polym. Eng. Sci. 2025, 65, 4052–4060. [Google Scholar] [CrossRef]
- Nahar, M.M.; Ma, B.; Guye, K.; Chau, Q.H.; Padilla, J.; Iyengar, M.; Agonafer, D. Review Article: Microscale Evaporative Cooling Technologies for High Heat Flux Microelectronics Devices: Background and Recent Advances. Appl. Therm. Eng. 2021, 194, 117109. [Google Scholar] [CrossRef]
- Ahmadian-Yazdi, M.R.; Eslamian, M. Effect of Marangoni Convection on the Perovskite Thin Liquid Film Deposition. Langmuir 2021, 37, 2596–2606. [Google Scholar] [CrossRef]
- Hu, C.; Pei, Z.; Shi, L.; Tang, D.; Bai, M.L. Phase Transition Properties of Thin Liquid Films with Various Thickness on Different Wettability Surfaces. Int. Commun. Heat Mass Transf. 2022, 135, 106125. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Q.; Cui, Z. Enhanced Heat Transfer of Liquid Film Evaporation via Subdividable Patterned Surfaces. J. Mol. Liq. 2023, 391, 123404. [Google Scholar] [CrossRef]
- Wang, H.; Lee, H.J.; Jin, J.; Koya, A.N.; Choi, C.K.; Li, L.; Li, W.; Lee, S.H. Design of a High-Performance Surface Plasmon Resonance Device for Effective Measurement of Thin Liquid Film Thickness. J. Mech. Sci. Technol. 2024, 38, 5769–5778. [Google Scholar] [CrossRef]
- Sotoudeh, F.; Mousavi, S.M.; Karimi, N.; Lee, B.J.; Abolfazli-Esfahani, J.; Manshadi, M.K.D. Natural and Synthetic Superhydrophobic Surfaces: A Review of the Fundamentals, Structures, and Applications. Alex. Eng. J. 2023, 68, 587–609. [Google Scholar] [CrossRef]
- Göhl, J.; Mark, A.; Sasic, S.; Edelvik, F. An Immersed Boundary Based Dynamic Contact Angle Framework for Handling Complex Surfaces of Mixed Wettabilities. Int. J. Multiph. Flow 2018, 109, 164–177. [Google Scholar] [CrossRef]
- Kim, E.; Kim, D.; Kwak, K.; Nagata, Y.; Bonn, M.; Cho, M. Wettability of Graphene, Water Contact Angle, and Interfacial Water Structure. Chem 2022, 8, 1187–1200. [Google Scholar] [CrossRef]
- Zhu, S.; Xie, K.; Lin, Q.; Cao, R.; Qiu, F. Experimental Determination of Surface Energy for High-Energy Surface: A Review. Adv. Colloid Interface Sci. 2023, 315, 102905. [Google Scholar] [CrossRef]
- Yang, H.; Ji, F.; Li, Z.; Tao, S. Preparation of Hydrophobic Surface on PLA and ABS by Fused Deposition Modeling. Polymers 2020, 12, 1539. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Yang, J.; Yue, Y.; Zhang, H. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer. Nanomaterials 2022, 12, 44. [Google Scholar] [CrossRef]
- Ozsipahi, M.; Wilson, A.A.; Ajaev, V.S.; Beskok, A. Evaporation from Nanoscale Thin Films and Menisci: Experiments, Theories, and Simulations. Adv. Heat Transf. 2024, 58, 1–38. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Kumar, G.; Prabhu, K.N. Review of Non-Reactive and Reactive Wetting of Liquids on Surfaces. Adv. Colloid Interface Sci. 2007, 133, 61–89. [Google Scholar] [CrossRef]
- Xu, B.; Chang, J.; Wu, M.; Chen, Z. Flow and Heat Transfer Characteristics of Spray Cooling on Hydrophilic—Hydrophobic Mixed Surface under Heterogeneous Heat Sources. Therm. Sci. Eng. Prog. 2025, 60, 103442. [Google Scholar] [CrossRef]
- Panda, A.; Pati, A.R.; Kumar, A.; Mohapatra, S.S. Dropwise Evaporation of Hydrophilic Coolant Droplets: A Methodology for the Development of Hydrophilic Coating and Attainment of Enhanced Heat Transfer. Int. Commun. Heat Mass Transf. 2019, 105, 19–27. [Google Scholar] [CrossRef]
- Gatapova, E.Y.; Peschenyuk, Y.A. Optical Methods for Measuring the Thickness of Thin Evaporating Liquid Films. J. Opt. Technol. 2024, 91, 285. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, T. A Novel Laser Interferometric Method for Thin Film Thickness Measurement in Gas-Liquid Intermittent Flow. Meas. Sci. Technol. 2024, 35, 105027. [Google Scholar] [CrossRef]
- Lubnow, M.; Jeffries, J.B.; Dreier, T.; Schulz, C. Water Film Thickness Imaging Based on Time-Multiplexed near-Infrared Absorption. Opt. Express 2018, 26, 20902. [Google Scholar] [CrossRef]
- Koegl, M.; Delwig, M.; Zigan, L. Characterization of Fluorescence Tracers for Thermometry and Film Thickness Measurements in Liquid Coolants Relevant for Thermal Management of Electric and Electronic Components. Sensors 2022, 22, 8892. [Google Scholar] [CrossRef]
- Grasso, M.; Petrov, V.; Manera, A. Accuracy and Error Analysis of Optical Liquid Film Thickness Measurement with Total Internal Reflection Method (TIRM). Exp. Fluids 2024, 65, 83. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.R.; Park, G.C.; Cho, H.K. Feasibility Test of a Liquid Film Thickness Sensor on a Flexible Printed Circuit Board Using a Three-Electrode Conductance Method. Sensors 2017, 17, 42. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.; Ye, H.; Zheng, Y.; Ma, Y. Design of Instantaneous Liquid Film Thickness Measurement System for Conductive or Non-Conductive Fluid with High Viscosity. AIP Adv. 2017, 7, 065207. [Google Scholar] [CrossRef]
- Dou, P.; Jia, Y.; Zheng, P.; Wu, T.; Yu, M.; Reddyhoff, T.; Peng, Z. Review of Ultrasonic-Based Technology for Oil Film Thickness Measurement in Lubrication. Tribol. Int. 2022, 165, 107290. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.; Bai, Y.; Zheng, D.; Fang, L. Flow Rate Measurement of Gas-Liquid Annular Flow through a Combined Multimodal Ultrasonic and Differential Pressure Sensor. Energy 2024, 288, 129852. [Google Scholar] [CrossRef]
- Al-Aufi, Y.A.; Hewakandamby, B.N.; Dimitrakis, G.; Holmes, M.; Hasan, A.; Watson, N.J. Thin Film Thickness Measurements in Two Phase Annular Flows Using Ultrasonic Pulse Echo Techniques. Flow Meas. Instrum. 2019, 66, 67–78. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Viljoen, A.; Mignolet, J.; Mathelié-Guinlet, M. AFM in Cellular and Molecular Microbiology. Cell. Microbiol. 2021, 23, e13324. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, A.; Lakner, P.; Huber, P.; Keller, T.F. Mapping the Nanoscale Elastic Property Modulations of Polypyrrole Thin Films in Liquid Electrolyte with EC-AFM. Nanoscale Adv. 2023, 6, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.G.; Versace, C. Spectroscopic Ellipsometry: Advancements, Applications and Future Prospects in Optical Characterization. Spectrosc. J. 2023, 1, 163–181. [Google Scholar] [CrossRef]
- Xue, T.; Zhang, S. Investigation on Heat Transfer Characteristics of Falling Liquid Film by Planar Laser-Induced Fluorescence. Int. J. Heat Mass Transf. 2018, 126, 715–724. [Google Scholar] [CrossRef]
- Volkov, R.S.; Strizhak, P.A. Using Planar Laser Induced Fluorescence to Determine Temperature Fields of Drops, Films, and Aerosols. Meas. J. Int. Meas. Confed. 2020, 153, 107439. [Google Scholar] [CrossRef]
- Dulin, V.; Cherdantsev, A.; Volkov, R.; Markovich, D. Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena. Energies 2023, 16, 1877. [Google Scholar] [CrossRef]
- Koegl, M.; Mil‘to, N.; Zigan, L. Simultaneous Film Temperature and Film Thickness Measurements for Jet Impingement Applications Using Two-Color Laser-Induced Fluorescence. Exp. Fluids 2024, 65, 41. [Google Scholar] [CrossRef]
- Yoshida, M.; Yamada, S.; Funami, Y.; Nakamura, H. High Spatio-Temporal Resolution Measurement of Boiling Heat Transfer of a Falling Droplet. Appl. Therm. Eng. 2023, 228, 120464. [Google Scholar] [CrossRef]
- Miskovic, V.; Malafronte, E.; Minetti, C.; Machrafi, H.; Varon, C.; Iorio, C.S. Thermotropic Liquid Crystals for Temperature Mapping. Front. Bioeng. Biotechnol. 2022, 10, 806362. [Google Scholar] [CrossRef]
- Islam, M.O.; Myneni, G.R.; Elsayed-Ali, H.E. Time-Domain Thermoreflectance Measurement of the Thermal Diffusivity of Nb Thin Films. Thin Solid Film. 2024, 790, 140213. [Google Scholar] [CrossRef]
- Xu, S.; Fan, A.; Wang, H.; Zhang, X.; Wang, X. Raman-Based Nanoscale Thermal Transport Characterization: A Critical Review. Int. J. Heat Mass Transf. 2020, 154, 119751. [Google Scholar] [CrossRef]
- Qiu, Q.; Meng, C.; Quan, S.; Wang, W. 3-D Simulation of Flow Behaviour and Film Distribution Outside a Horizontal Tube. Int. J. Heat Mass Transf. 2017, 107, 1028–1034. [Google Scholar] [CrossRef]
- Hou, H.; Bi, Q.; Ma, H.; Wu, G. Distribution Characteristics of Falling Film Thickness around a Horizontal Tube. Desalination 2012, 285, 393–398. [Google Scholar] [CrossRef]
- Grabas, B. Vibration-Assisted Laser Surface Texturing of Metals as a Passive Method for Heat Transfer Enhancement. Exp. Therm. Fluid Sci. 2015, 68, 499–508. [Google Scholar] [CrossRef]
- Berto, A.; Lavieille, P.; Azzolin, M.; Bortolin, S.; Miscevic, M.; Del Col, D. Liquid Film Thickness and Heat Transfer Measurements during Downflow Condensation inside a Small Diameter Tube. Int. J. Multiph. Flow 2021, 140, 103649. [Google Scholar] [CrossRef]
- Chang, S.; Yang, Y.; Shi, Q.; Qi, H. Experimental Study of Shear-Driven Water Film with Brightness-Based Laser-Induced Fluorescence Technique. Int. J. Multiph. Flow 2023, 166, 104514. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Wang, Y.; Chen, J.; Zhang, J. Measurement on Falling Film Thickness Distribution around Horizontal Tube with Laser-Induced Fluorescence Technology. Int. J. Heat Mass Transf. 2015, 89, 707–713. [Google Scholar] [CrossRef]
- Almutairi, Z.; Al-Alweet, F.M.; Alghamdi, Y.A.; Almisned, O.A.; Alothman, O.Y. Investigating the characteristics of two-phase flow using electrical capacitance tomography (ECT) for three pipe orientations. Processes 2020, 8, 51. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Lu, T.; Chen, X.; Shen, S.; Liu, B. Three-Dimensional Film Thickness Distribution of Horizontal Tube Falling Film with Column Flow. Appl. Therm. Eng. 2019, 154, 140–149. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, H.; Zhao, Y. Experimental Study on the Falling Film Thickness Distribution on a Horizontal Tube under the Cross Airflow. Heat Mass Transf. 2023, 59, 2167–2179. [Google Scholar] [CrossRef]
- Zheng, J.W.; Yang, K.S.; Wu, Y.L. Falling Film Thickness Distribution around a Horizontal Tube under Countercurrent Air Flow. Int. J. Heat Mass Transf. 2025, 245, 127011. [Google Scholar] [CrossRef]
- Liu, S.; Mu, X.; Shen, S.; Li, C.; Wang, B. Experimental Study on the Distribution of Local Heat Transfer Coefficient of Falling Film Heat Transfer Outside Horizontal Tube. Int. J. Heat Mass Transf. 2021, 170, 121031. [Google Scholar] [CrossRef]
- Lee, Y.T.; Wen, C.Y.; Chien, L.H.; He, J.; Yang, A.S. Heat Transfer of Spray Falling Films over Horizontal Tubes with Counter Current Airflows in an Evaporative Condenser. Int. J. Heat Mass Transf. 2022, 183, 122199. [Google Scholar] [CrossRef]
- Kumar Ahirwar, B.; Kumar, A. A Comprehensive Review on Heat Transfer Enhancement in Tubular Heat Exchangers Using Twisted Tapes, Wire Coil Inserts, and Their Combined Effect with Nanofluids. Renew. Sustain. Energy Rev. 2025, 224, 116035. [Google Scholar] [CrossRef]
- Hu, X.; Jacobi, A.M. Departure-site spacing for liquid droplets and jets falling between horizontal circular tubes. Exp. Therm. Fluid Sci. 1998, 16, 322–331. [Google Scholar] [CrossRef]
- Ding, H.; Xie, P.; Ingham, D.; Ma, L.; Pourkashanian, M. Flow Behaviour of Drop and Jet Modes of a Laminar Falling Film on Horizontal Tubes. Int. J. Heat Mass Transf. 2018, 124, 929–942. [Google Scholar] [CrossRef]
- Yan, W.M.; Pan, C.W.; Yang, T.F.; Ghalambaz, M. Experimental Study on Fluid Flow and Heat Transfer Characteristics of Falling Film over Tube Bundle. Int. J. Heat Mass Transf. 2019, 130, 9–24. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Lu, T.; Sheng, J.; Chen, X. Three-Dimensional Film Thickness Distribution of Horizontal Tube Falling Film with Droplet and Sheet Flow. Int. J. Multiph. Flow 2022, 148, 103933. [Google Scholar] [CrossRef]
- Wang, R.; Duan, R.; Jia, H. Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison. Polymers 2021, 13, 1205. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Li, Q.T.; Qi, D.; Feng, Z.X.; Jiang, J.M. Numerical Study of the Cross-Vapor Stream Effect on Falling Film Heat Transfer Performance over a Horizontal Tube. Appl. Therm. Eng. 2023, 224, 120109. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhang, X.; Zhu, X.; Quan, S.; Shen, S. Influential Analysis of Geometrical Parameters on Falling-Film Thickness and Distribution of Sheet Flow Outside Horizontal Tube. Desalin. Water Treat. 2018, 124, 98–105. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Yao, Z.L.; Qi, D.; Ji, W.T.; Li, A.G.; Tao, W.Q. Numerical Investigation of Tube Bundle Arrangement Effect on Falling Film Fluid Flow and Heat Transfer. Appl. Therm. Eng. 2022, 201, 117828. [Google Scholar] [CrossRef]







| Method Category | Spatial Res. (Typical) | Measurable Range | Scalability & Complexity | Advantages | Limitations | Refs. |
|---|---|---|---|---|---|---|
| Interferometry/Ellipsometry | <1 nm–0.5 µm | 1 nm–20 µm | Low Scalability/High Cost. (Strictly lab-scale, vibration sensitive) | Sub-micron precision; Non-intrusive. | Requires optically smooth interface; Limited dynamic range. | [25,37] |
| Confocal/LIF Imaging | 1–10 µm | >5 µm | Medium Scalability. (Requires optical access & lasers) | 2D field mapping; Coupled velocity measurement. | Dye contamination; Signal attenuation; Complex calibration. | [28,38] |
| Conductive/Capacitive Sensors | 0.1–1 mm | 10 µm–5 mm | High Scalability/Low Cost. (Industrial applicable) | Fast response (>1 kHz); Robust in opaque fluids. | Intrusive (probes); Conductivity dependent; Low spatial res. | [30,31] |
| Ultrasonic Pulse Echo | ~50 µm | >100 µm | High Scalability. (Penetrates metal walls) | Non-intrusive; Works for opaque liquids/pipes. | Blind zone for thin films; Sound speed calibration errors. | [32,34] |
| Method | Accuracy (Typical) | Temporal Res. | Scalability | Key Application | Refs. |
|---|---|---|---|---|---|
| Micro-Thermocouple | ±0.1–0.5 K | Low (~Hz) | High (Simple, cheap) | Point measurement in stable films. | [38] |
| PLIF (Two-color) | ±0.5–1.0 K | High (>1 kHz) | Low (Complex optics) | 2D temperature field in dynamic micro-films. | [28,41] |
| IR Thermography | ±1.0–2.0 K | High (>1 kHz) | Medium (Window required) | Surface temperature mapping; Dry spot detection. | [42] |
| Thermochromic Liquid Crystals (TLC) | ±0.5 K | Low (<100 Hz) | Medium | Visualizing isotherms on complex curved walls. | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, Y.; He, C.; Xiao, Y.; Yan, W.; Cui, X. Recent Progress in Experimental Techniques for Thin Liquid Film Evaporation. Energies 2026, 19, 664. https://doi.org/10.3390/en19030664
Zhang Y, He C, Xiao Y, Yan W, Cui X. Recent Progress in Experimental Techniques for Thin Liquid Film Evaporation. Energies. 2026; 19(3):664. https://doi.org/10.3390/en19030664
Chicago/Turabian StyleZhang, Yu, Chengwei He, Yanwen Xiao, Weichao Yan, and Xin Cui. 2026. "Recent Progress in Experimental Techniques for Thin Liquid Film Evaporation" Energies 19, no. 3: 664. https://doi.org/10.3390/en19030664
APA StyleZhang, Y., He, C., Xiao, Y., Yan, W., & Cui, X. (2026). Recent Progress in Experimental Techniques for Thin Liquid Film Evaporation. Energies, 19(3), 664. https://doi.org/10.3390/en19030664

