Anaerobic Digestion of Flower Waste: A Mini Review on Biomethane Potential, Process Optimization, and Sustainability Perspectives
Abstract
1. Introduction and Scope
Search Strategy and Analytical Methods
2. Biomass Composition and Properties
2.1. Flower Waste Characterization and Their Suitability for AD
| Plant Species | Plant Part | TS g·kg−1 | VS % | CELL g·g−1TS | HEM g·g−1TS | LIG g·g−1TS | References |
|---|---|---|---|---|---|---|---|
| Ageratum conyzoides | n.a. | 135 | 72 | n.a. | n.a. | n.a. | Saha et al., 2018 [32] |
| Aster, Marigold | n.a. | 225 | n.a. | n.a. | n.a. | n.a. | Kulkarni and Ghanegaonkar, 2019 [33] |
| Flower waste | n.a. | 952 | 89 | n.a. | n.a. | n.a. | Singh et al., 2007 [23] |
| Floral waste | n.a. | 164 | 96 | n.a. | n.a. | n.a. | Jaysingpure and Khobragade, 2024 [34] |
| Rose | n.a. | 206 | n.a. | n.a. | n.a. | n.a. | Deepanraj et al., 2015 [35] |
| Sambangi | n.a. | 92 | n.a. | n.a. | n.a. | n.a. | “ |
| Gulmohar | n.a. | 142 | n.a. | n.a. | n.a. | n.a. | “ |
| Marigold | n.a. | 466 | n.a. | n.a. | n.a. | n.a. | “ |
| Tulips chaff | n.a. | 79 | 95 | n.a. | n.a. | n.a. | Frankowski et al., 2020 [25] |
| Rose | n.a. | 220 | 93 | n.a. | n.a. | n.a. | “ |
| Sunflower | n.a. | 214 | 94 | n.a. | n.a. | n.a. | “ |
| Chrysanthemums | n.a. | 255 | 89 | n.a. | n.a. | n.a. | “ |
| Marigold | n.a. | 268 | 86 | 0.208 | 0.148 | 0.246 | Poveda and Alzate, 2021 [24] |
| Cup Plant | n.a. | n.a. | n.a. | 0.304 | 0.115 | 0.082 | Schmidt et al., 2018 [36] |
| Virginia mallow | n.a. | 399 | 85 | 0.401 | 0.091 | 0.078 | “ |
| Reed canary grass | n.a. | n.a. | n.a. | 0.326 | 0.117 | 0.088 | “ |
| Tall Wheatgrass | n.a. | n.a. | n.a. | 0.418 | 0.116 | 0.101 | “ |
| Giant Knotweed | n.a. | 211 | n.a. | 0.328 | 0.031 | 0.182 | “ |
| Wild plant mix (25 species) | n.a. | n.a. | 94 | 0.312 | 0.179 | 0.106 | “ |
| Marigold | Petals | 932 | 87 | 0.376 | 0.374 | 0.028 | Pandey and Dhoble, 2025 [37] |
| Sunflower | Head | 905 | 80 | n.a. | n.a. | 0.095 | Zhurka et al., 2019 [38] |
| Sunflower | Stalk | 919 | 88 | n.a. | n.a. | 0.187 | “ |
| Rose | Stalk | 955 | 91 | 0.443 | 0.020 | 0.152 | Liang et al., 2016 [22] |
| Sunflower | Stalk | 940 | 94 | 0.195 | 0.318 | 0.278 | Monlau et al., 2012 [39] |
| Zantedeschiaelliottiana/aethiopica | Flower | 7.46 | 93 | 0.072 | 0.019 | 0.158 | Pereira et al., 2022 [21] |
| Gerbera jamesonii | Flower | 15.1 | 95 | 0.152 | 0.032 | 0.08 | “ |
| Chrysanthemum indicum white | Flower | 9.1 | 87 | 0.113 | 0.03 | 0.167 | “ |
| Chrysanthemum indicum purple | Flower | 8.6 | 87 | 0.114 | 0.036 | 0.16 | “ |
| Chrysanthemum indicum yellow | Flower | 9.02 | 87 | 0.043 | 0.018 | 0.244 | “ |
| Chrysanthemum indicum yellow | Flower | 9.92 | 89 | 0.064 | 0.038 | 0.184 | “ |
| Limonium michigan | Flower | 46.6 | 93 | 0.182 | 0.047 | 0.233 | “ |
| Gerbera jamesonii | Flower | 15.1 | 95 | 0.152 | 0.032 | 0.08 | “ |
| Lilium sp. | Flower | 5.19 | 82 | 0.12 | 0.037 | 0.067 | “ |
| Limonium sinuatum | Flower | 81 | 94 | 0.295 | 0.012 | 0.21 | “ |
| Zantedeschiaelliottiana/aethiopica | Flower | 7.46 | 93 | 0.072 | 0.019 | 0.158 | “ |
| Gerbera jamesonii | Leaves | 16.1 | 80 | 0.102 | 0.055 | 0.071 | “ |
| Chrysanthemum indicum purple | Leaves | 9.06 | 78 | 0.074 | 0.029 | 0.085 | “ |
| Chrysanthemum indicum white | Leaves | 8.6 | 78 | 0.045 | 0.016 | 0.229 | “ |
| Chrysanthemum indicum purple | Leaves | 9.06 | 78 | 0.074 | 0.029 | 0.085 | “ |
| Chrysanthemum indicum yellow | Leaves | 8.83 | 74 | 0.063 | 0.02 | 0.169 | “ |
| Elleboro winterbells | Leaves | 23 | 89 | 0.092 | 0.057 | 0.141 | “ |
| Limonium michigan | Leaves | 28.6 | 91 | 0.16 | 0.066 | 0.184 | “ |
| Limonium sinuatum | Leaves | 17.6 | 87 | 0.137 | 0.038 | 0.175 | “ |
| Lilium sp. | Leaves | 7.49 | 81 | 0.052 | 0.032 | 0.2 | “ |
| Zantedeschiaelliottiana/aethiopica | Leaves | 10.2 | 86 | 0.099 | 0.055 | 0.089 | “ |
| Gerbera jamesonii | Stems | 10.6 | 93 | 0.359 | 0.082 | 0.057 | “ |
| Chrysanthemum indicum purple | Stems | 23.5 | 93 | 0.11 | 0.026 | 0.088 | “ |
| Chrysanthemum indicum white | Stems | 19.2 | 90 | 0.439 | 0.099 | 0.092 | “ |
| Chrysanthemum indicum purple | Stems | 23.5 | 93 | 0.11 | 0.026 | 0.088 | “ |
| Chrysanthemum pompon yellow | Stems | 21.5 | 93 | 0.357 | 0.112 | 0.1 | “ |
| Chrysanthemum indicum yellow | Stems | 21.5 | 91 | 0.524 | 0.088 | 0.089 | “ |
| Chrysanthemum indicum yellow | Stems | 18.9 | 89 | 0.478 | 0.071 | 0.121 | “ |
| Elleboro winterbells | Stems | 17 | 88 | 0.207 | 0.034 | 0.029 | “ |
| Limonium michigan | Stems | 21.5 | 93 | 0.347 | 0.104 | 0.132 | “ |
| Limonium sinuatum | Stems | 28.3 | 93 | 0.325 | 0.036 | 0.079 | “ |
| Lilium sp. | Stems | 7.86 | 87 | 0.45 | 0.092 | 0.042 | “ |
| Zantedeschiaelliottiana/aethiopica | Stems | 4.11 | 72 | 0.167 | 0.026 | 0.066 | “ |
2.2. Complementary Substrates for Flower AD
3. Experimental Studies on the AD of Flower Waste
3.1. Overview of Available Literature
3.2. Pretreatments Applied
4. Factors Affecting AD of Flower Wastes
4.1. pH and Temperature Effects
4.2. Hydraulic Retention Time (HRT)
4.3. Organic Loading Rate (OLR) and Co-Digestion Strategies
4.4. Microbial Community Dynamics and Mechanisms
5. Challenges and Future Perspectives
5.1. Reactor Configuration and Scale-Up Challenges
5.2. Future Research for Flower Waste
5.3. Integration with Carbon Capture and Utilization
5.3.1. In Situ Biomethanation: Operational Limits and pH Control
5.3.2. Phenolic Inhibition and Biocatalyst Sensitivity
5.3.3. Alternative Bio-Electrochemical and Enzymatic Pathways
5.4. Policy and Economic Context
5.5. Sustainability Assessment and Life Cycle Considerations
6. Conclusions and Recommendations
- (i)
- Standardize analytical and experimental protocols for biochemical methane potential testing of floral substrates, including clear reporting of total solids, volatile solids, inoculum-to-substrate ratios, reactor conditions, and statistical variance derived from adequate replication, to enable data comparability across studies. This standardization will enable systematic integration of pretreatment mechanisms with microbial community dynamics, linking operational parameters (C/N ratio, S/I ratio, OLR) to syntrophic relationships and inhibition pathways specific to flower waste.
- (ii)
- Perform pilot- and full-scale continuous AD trials using optimized co-digestion ratios to balance carbon-to-nitrogen content, mitigate inhibition, and improve process stability under realistic operational conditions. Addressing the identified batch-to-continuous performance gap as a Technology Readiness Level bottleneck (TRL < 4), which is critical for establishing clear benchmarks for technological advancement and validating laboratory findings at industrial scale.
- (iii)
- Integrate life cycle assessment and techno-economic analysis into experimental and modeling studies to evaluate environmental impacts, energy recovery efficiency, and economic viability within regional or national waste management frameworks, establishing a strategic, evidence-based research agenda that bridges fundamental mechanistic understanding with industrial implementation requirements.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Anaerobic Digestion |
| BMP | Biochemical Methane Potential |
| BOD | Biochemical Oxygen Demand |
| CCU | Carbon Capture and Utilization |
| CHP | Combined Heat and Power |
| CSTR | Continuously Stirred Tank Reactor |
| EE-MRIO | Environmentally Extended Multi-Regional Input-Output |
| F/M | Food-to-Microorganism Ratio |
| FW | Food Waste |
| GHG | Greenhouse Gas |
| GWP | Global Warming Potential |
| HPH | High-Pressure Homogenization |
| HRT | Hydraulic Retention Time |
| ISR | Inoculum-to-Substrate Ratio |
| LCA | Life Cycle Assessment |
| MSW | Municipal Solid Waste |
| OFMSW | Organic Fraction of Municipal Solid Waste |
| OLR | Organic Loading Rate |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RNG | Renewable Natural Gas |
| SDG | Sustainable Development Goals |
| TEA | Techno-Economic Assessment |
| TRL | Technology Readiness Level |
| TS | Total Solids |
| UASB | Upflow Anaerobic Sludge Blanket |
| VFA | Volatile Fatty Acids |
| VOC | Volatile Organic Compounds |
| VS | Volatile Solids |
References
- Kaza, S.; Van Woerden, F.; Bhada-Tata, P.; Yao, L. What a Waste 2.0; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Costa, E.; Oshita, K.; Takaoka, M. Municipal Solid Waste Management in Portugal Using Material Flow Analysis: Regional Assessment. J. Mater. Cycles Waste Manag. 2025, 27, 3238–3251. [Google Scholar] [CrossRef]
- Mor, S.; Ravindra, K. Municipal Solid Waste Landfills in Lower- and Middle-Income Countries: Environmental Impacts, Challenges and Sustainable Management Practices. Process Saf. Environ. Prot. 2023, 174, 510–530. [Google Scholar] [CrossRef]
- Ozbay, G.; Jones, M.; Gadde, M.; Isah, S.; Attarwala, T. Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health. J. Environ. Public Health 2021, 2021, 6921607. [Google Scholar] [CrossRef]
- Sushma Devi, N.; Tagi, N.; Tabing, R. Flower Waste Management: A Review. Environ. Ecol. 2022, 40, 251–257. [Google Scholar]
- Waghmode, M.S.; Gunjal, A.B.; Nawani, N.N.; Patil, N.N. Management of Floral Waste by Conversion to Value-Added Products and Their Other Applications. Waste Biomass Valorization 2018, 9, 33–43. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, R.; Dhanker, R.; Kamble, S.S.; Mohamed, H.I. Sustainable Management of Floral Waste to Reduce Environmental Pollution by Conversion to Value-Added Products and Their Applications in the Synthesizing of Nanomaterials: A Review. Water Air Soil Pollut. 2024, 235, 436. [Google Scholar] [CrossRef]
- Zhang, Y.; Yue, D.; Liu, J.; He, L.; Nie, Y. Effect of Organic Compositions of Aerobically Pretreated Municipal Solid Waste on Non-Methane Organic Compound Emissions During Anaerobic Degradation. Waste Manag. 2012, 32, 1116–1121. [Google Scholar] [CrossRef]
- Nordahl, S.L.; Preble, C.V.; Kirchstetter, T.W.; Scown, C.D. Greenhouse Gas and Air Pollutant Emissions from Composting. Environ. Sci. Technol. 2023, 57, 2235–2247. [Google Scholar] [CrossRef]
- Pereira, P.C.G.; Parente, C.E.T.; Carvalho, G.O.; Torres, J.P.M.; Meire, R.O.; Dorneles, P.R.; Malm, O. A Review on Pesticides in Flower Production: A Push to Reduce Human Exposure and Environmental Contamination. Environ. Pollut. 2021, 289, 117817. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Piadeh, F.; Offie, I.; Behzadian, K.; Rizzuto, J.P.; Bywater, A.; Córdoba-Pachón, J.R.; Walker, M. A Critical Review for the Impact of Anaerobic Digestion on the Sustainable Development Goals. J. Environ. Manag. 2023, 349, 119458. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, S.; Adhikari, A.; Shrestha, P.P.; Ghimire, A. Life-Cycle Assessment of Solid Waste Management in Dhulikhel Municipality, Nepal. J. Environ. Eng. Sci. 2022, 17, 147–154. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Ran, Y.; Osman, A.I.; Jin, K.; Samer, M.; Ai, P. Anaerobic Digestion of Agricultural Waste for Biogas Production and Sustainable Bioenergy Recovery: A Review. Environ. Chem. Lett. 2024, 22, 2641–2668. [Google Scholar] [CrossRef]
- Pavičić, J.; Mavar, K.N.; Brkić, V.; Simon, K. Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]
- Menardo, S.; Balsari, P. An Analysis of the Energy Potential of Anaerobic Digestion of Agricultural By-Products and Organic Waste. Bioenergy Res. 2012, 5, 759–767. [Google Scholar] [CrossRef]
- International Fresh Produce Association. A Look Back and a Look Forward: Floral Industry 2024; International Fresh Produce Association: Washington, DC, USA, 2024. [Google Scholar]
- Isikgor, F.H.; Becer, C.R. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Baysal, I.; Ekizoglu, M.; Ertas, A.; Temiz, B.; Agalar, H.G.; Yabanoglu-Ciftci, S.; Temel, H.; Ucar, G.; Turkmenoglu, F.P. Identification of Phenolic Compounds by Lc-Ms/Ms and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium Effusum and L. Sinuatum. Molecules 2021, 26, 4040. [Google Scholar] [CrossRef]
- Pereira, T.D.S.; Catenacci, A.; Guerreschi, A.; Bellandi, G.; Malpei, F. Biochemical Characterization and Anaerobic Degradability of Flower Wastes: Preliminary Assessment and Statistical Interpretation towards Energy Recovery. Sci. Total Environ. 2022, 830, 154842. [Google Scholar] [CrossRef]
- Liang, Y.G.; Cheng, B.; Si, Y.-B.; Cao, D.J.; Li, D.L.; Chen, J.F. Effect of Solid-State NaOH Pretreatment on Methane Production from Thermophilic Semi-Dry Anaerobic Digestion of Rose Stalk. Water Sci. Technol. 2016, 73, 2913–2920. [Google Scholar] [CrossRef]
- Singh, S.P.; Rathore, M.; Tyagi, S. Feasibility Study of Biogas Production from Flower Waste. Indian J. Environ. Prot. 2007, 27, 597–603. [Google Scholar]
- Poveda-Giraldo, J.A.; Cardona Alzate, C.A. A Biorefinery for the Valorization of Marigold (Calendula officinalis) Residues to Produce Biogas and Phenolic Compounds. Food Bioprod. Process. 2021, 125, 91–104. [Google Scholar] [CrossRef]
- Frankowski, J.; Zaborowicz, M.; Dach, J.; Czekała, W.; Przybył, J. Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floriculturalwaste and Modeling of Methane Production Using Deep Neural Modeling Methods. Energies 2020, 13, 3014. [Google Scholar] [CrossRef]
- Aguilera-Sáez, L.M.; Arrabal-Campos, F.M.; Callejón-Ferre, Á.J.; Suárez Medina, M.D.; Fernández, I. Use of Multivariate NMR Analysis in the Content Prediction of Hemicellulose, Cellulose and Lignin in Greenhouse Crop Residues. Phytochemistry 2019, 158, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Sarkar, G.M.; Lahiri, S.C. Effect of Pesticide (Tara-909) on Biomethanation of Sewage Sludge and Isolated Methanogens. Biomass-Bioenergy 2002, 23, 75–80. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Khalil, E.F.; Whitmore, T.N.; Gamal-El-Din, H.; El-Bassel, A.; Lloyd, A.D. The Effects of Pesticides on Anaerobic Digestion Processes. Environ. Technol. 1991, 12, 471–475. [Google Scholar] [CrossRef]
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane Production Through Anaerobic Digestion: Participation and Digestion Characteristics of Cellulose, Hemicellulose and Lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Ragauskas, A.J. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Front. Chem. 2016, 4, 45. [Google Scholar] [CrossRef]
- Saha, B.; Sathyan, A.; Mazumder, P.; Choudhury, S.P.; Kalamdhad, A.S.; Khwairakpam, M.; Mishra, U. Biochemical Methane Potential (BMP) Test for Ageratum conyzoides to Optimize Ideal Food to Microorganism (F/M) Ratio. J. Environ. Chem. Eng. 2018, 6, 5135–5140. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ghanegaonkar, P.M. Biogas Generation from Floral Waste Using Different Techniques. Glob. J. Environ. Sci. Manag. 2019, 5, 17–30. [Google Scholar] [CrossRef]
- Jaysingpure, V.; Khobragade, M. Optimization of Parameters Responsible for the Rate of Gas Generation Through Mixed Anaerobic Digestion. Adv. Sci. Technol. Res. J. 2024, 18, 256–271. [Google Scholar] [CrossRef]
- Deepanraj, A.; Vijayalakshmi, S.; Ranjitha, J. Production of Bio Gas from Vegetable and Flowers Wastes Using Anaerobic Digestion. Appl. Mech. Mater. 2015, 787, 803–808. [Google Scholar] [CrossRef]
- Schmidt, A.; Lemaigre, S.; Delfosse, P.; von Francken-Welz, H.; Emmerling, C. Biochemical Methane Potential (BMP) of Six Perennial Energy Crops Cultivated at Three Different Locations in W-Germany. Biomass Convers. Biorefinery 2018, 8, 873–888. [Google Scholar] [CrossRef]
- Pandey, K.P.; Dhoble, A.S. Impact of Fungal Pretreatment on Methane Enhancement and Microbiome Dynamics in the Anaerobic Digestion of Floral Waste. Biomass Bioenergy 2025, 197, 107817. [Google Scholar] [CrossRef]
- Zhurka, M.; Spyridonidis, A.; Vasiliadou, I.A.; Stamatelatou, K. Biogas Production from Sunflower Head and Stalk Residues: Effect of Alkaline Pretreatment. Molecules 2020, 25, 164. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Steyer, J.P.; Carrere, H. Comparison of Seven Types of Thermo-Chemical Pretreatments on the Structural Features and Anaerobic Digestion of Sunflower Stalks. Bioresour. Technol. 2012, 120, 241–247. [Google Scholar] [CrossRef]
- Li, Y.; Achinas, S.; Zhao, J.; Geurkink, B.; Krooneman, J.; Willem Euverink, G.J. Co-Digestion of Cow and Sheep Manure: Performance Evaluation and Relative Microbial Activity. Renew. Energy 2020, 153, 553–563. [Google Scholar] [CrossRef]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Ferrer, I.; Gamiz, M.; Almeida, M.; Ruiz, A. Pilot Project of Biogas Production from Pig Manure and Urine Mixture at Ambient Temperature in Ventanilla (Lima, Peru). Waste Manag. 2009, 29, 168–173. [Google Scholar] [CrossRef]
- Duan, N.; Zhang, D.; Lin, C.; Zhang, Y.; Zhao, L.; Liu, H.; Liu, Z. Effect of Organic Loading Rate on Anaerobic Digestion of Pig Manure: Methane Production, Mass Flow, Reactor Scale and Heating Scenarios. J. Environ. Manag. 2019, 231, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Dong, Y.; Zhang, X.; Tan, T. Anaerobic Co-Digestion of Food Waste and Straw for Biogas Production. Renew. Energy 2015, 78, 527–530. [Google Scholar] [CrossRef]
- Guan, R.; Li, X.; Wachemo, A.C.; Yuan, H.; Liu, Y.; Zou, D.; Zuo, X.; Gu, J. Enhancing Anaerobic Digestion Performance and Degradation of Lignocellulosic Components of Rice Straw by Combined Biological and Chemical Pretreatment. Sci. Total Environ. 2018, 637–638, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Lachguer, K.; El Merzougui, S.; Boudadi, I.; Laktib, A.; Ben El Caid, M.; Ramdan, B.; Boubaker, H.; Serghini, M.A. Major Phytochemical Compounds, In Vitro Antioxidant, Antibacterial, and Antifungal Activities of Six Aqueous and Organic Extracts of Crocus sativus L. Flower Waste. Waste Biomass Valorization 2023, 14, 1571–1587. [Google Scholar] [CrossRef]
- Zara, S.; Petretto, G.L.; Mannu, A.; Zara, G.; Budroni, M.; Mannazzu, I.; Multineddu, C.; Pintore, G.; Fancello, F. Antimicrobial Activity and Chemical Characterization of a Non-Polar Extract of Saffron Stamens in Food Matrix. Foods 2021, 10, 703. [Google Scholar] [CrossRef]
- Kim, J.; Kang, C.M. Increased Anaerobic Production of Methane by Co-Digestion of Sludge with Microalgal Biomass and Food Waste Leachate. Bioresour. Technol. 2015, 189, 409–412. [Google Scholar] [CrossRef]
- Lin, J.; Zuo, J.; Gan, L.; Li, P.; Liu, F.; Wang, K.; Chen, L.; Gan, H. Effects of Mixture Ratio on Anaerobic Co-Digestion with Fruit and Vegetable Waste and Food Waste of China. J. Environ. Sci. 2011, 23, 1403–1408. [Google Scholar] [CrossRef]
- André, L.; Pauss, A.; Ribeiro, T. Solid Anaerobic Digestion: State-of-Art, Scientific and Technological Hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A Review on Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Biomass by Different Enhancement Techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Gao, Z.; Alshehri, K.; Li, Y.; Qian, H.; Sapsford, D.; Cleall, P.; Harbottle, M. Advances in Biological Techniques for Sustainable Lignocellulosic Waste Utilization in Biogas Production. Renew. Sustain. Energy Rev. 2022, 170, 112995. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and Strategies for Solid-State Anaerobic Digestion of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Mirmohamadsadeghi, S. Hydrothermal Pretreatment of Safflower Straw to Enhance Biogas Production. Energy 2019, 172, 545–554. [Google Scholar] [CrossRef]
- Tartakovsky, B.; Matteau-Lebrun, F.; McGinn, P.J.; O’Leary, S.J.B.; Guiot, S.R. Methane Production from the Microalga Scenedesmus sp. AMDD in a Continuous Anaerobic Reactor. Algal Res. 2013, 2, 394–400. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, M.; Liang, C.; Chui, C.; Wang, N.; Shi, J.; Liu, L. Multivariate Insights into Enhanced Biogas Production in Thermophilic Dry Anaerobic Co-Digestion of Food Waste with Kitchen Waste or Garden Waste: Process Properties, Microbial Communities and Metagenomic Analyses. Bioresour. Technol. 2022, 361, 127684. [Google Scholar] [CrossRef]
- Kim, M.; Abdulazeez, M.; Haroun, B.M.; Nakhla, G.; Keleman, M. Microbial Communities in Co-Digestion of Food Wastes and Wastewater Biosolids. Bioresour. Technol. 2019, 289, 121580. [Google Scholar] [CrossRef]
- Sieborg, M.U.; Jønson, B.D.; Larsen, S.U.; Vazifehkhoran, A.H.; Triolo, J.M. Co-Ensiling of Wheat Straw as an Alternative Pre-Treatment to Chemical, Hydrothermal and Mechanical Methods for Methane Production. Energies 2020, 13, 4047. [Google Scholar] [CrossRef]
- Motte, J.C.; Escudié, R.; Hamelin, J.; Steyer, J.P.; Bernet, N.; Delgenes, J.P.; Dumas, C. Substrate Milling Pretreatment as a Key Parameter for Solid-State Anaerobic Digestion Optimization. Bioresour. Technol. 2015, 173, 185–192. [Google Scholar] [CrossRef]
- Sankaran, R.; Parra Cruz, R.A.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.H.; Tao, Y. Recent Advances in the Pretreatment of Microalgal and Lignocellulosic Biomass: A Comprehensive Review. Bioresour. Technol. 2020, 298, 122476. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, X.; Li, Q.; Wang, X.; Liu, M.; Xie, S.; Chai, L.; Yuan, J. Directed Bioconversion of Kraft Lignin to Polyhydroxyalkanoate by Cupriavidus Basilensis B-8 Without Any Pretreatment. Process Biochem. 2017, 52, 238–242. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Tian, M.; Mao, Z.; Tang, L.; Zhang, J.; Zhang, H. Enhancement of Methane Production from Cassava Residues by Biological Pretreatment Using a Constructed Microbial Consortium. Bioresour. Technol. 2011, 102, 8899–8906. [Google Scholar] [CrossRef]
- Nikolić, S.; Mojović, L.; Rakin, M.; Pejin, D.; Pejin, J. Ultrasound-Assisted Production of Bioethanol by Simultaneous Saccharification and Fermentation of Corn Meal. Food Chem. 2010, 122, 216–222. [Google Scholar] [CrossRef]
- Khanal, S.K.; Montalbo, M.; Van Leeuwen, J.; Srinivasan, G.; Grewell, D. Ultrasound Enhanced Glucose Release from Corn in Ethanol Plants. Biotechnol. Bioeng. 2007, 98, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Holliger, C.; Laclos, F.D.; Astals, S.D.; Alves, S.; Andrade, M.; Appels, D.; Azman, L.; Bagnoud, S.; Fernandez, U.; Battista, J.; et al. Requirements for Measurement and Validation of Biochemical Methane Potential (BMP); DTU Library: Lyngby, Denmark, 2021; Volume 4. [Google Scholar]
- Tsapekos, P.; Kougias, P.G.; Angelidaki, I. Anaerobic Mono- and Co-Digestion of Mechanically Pretreated Meadow Grass for Biogas Production. Energy Fuels 2015, 29, 4005–4010. [Google Scholar] [CrossRef]
- Hafner, S.D.; de Laclos, H.F.; Koch, K.; Holliger, C. Improving Inter-Laboratory Reproducibility in Measurement of Biochemical Methane Potential (BMP). Water 2020, 12, 1752. [Google Scholar] [CrossRef]
- Liguori, R.; Faraco, V. Biological Processes for Advancing Lignocellulosic Waste Biorefinery by Advocating Circular Economy. Bioresour. Technol. 2016, 215, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Monclaro, A.V.; Gomes, H.A.R.; Duarte, G.C.; de Souza Moreira, L.R.; Filho, E.X.F. Unveiling the Biomass Valorization: The Microbial Diversity in Promoting a Sustainable Socio-Economy. Bioenergy Res. 2024, 17, 1355–1374. [Google Scholar] [CrossRef]
- Ünyay, H.; Yılmaz, F.; Başar, İ.A.; Altınay Perendeci, N.; Çoban, I.; Şahinkaya, E. Effects of Organic Loading Rate on Methane Production from Switchgrass in Batch and Semi-Continuous Stirred Tank Reactor System. Biomass Bioenergy 2022, 156, 106306. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, T.; Xing, W.; Li, R.; Yang, T.; Yao, N.; Lv, D. Links between Carbon/Nitrogen Ratio, Synergy and Microbial Characteristics of Long-Term Semi-Continuous Anaerobic Co-Digestion of Food Waste, Cattle Manure and Corn Straw. Bioresour. Technol. 2022, 343, 126094. [Google Scholar] [CrossRef]
- Haider, M.R.; Zeshan; Yousaf, S.; Malik, R.N.; Visvanathan, C. Effect of Mixing Ratio of Food Waste and Rice Husk Co-Digestion and Substrate to Inoculum Ratio on Biogas Production. Bioresour. Technol. 2015, 190, 451–457. [Google Scholar] [CrossRef]
- Ahmad, R.M.; Javied, S.; Aslam, A.; Alamri, S.; Zaman, Q.U.; Hassan, A.; Noor, N. Optimizing Biogas Production and Digestive Stability through Waste Co-Digestion. Sustainability 2024, 16, 3045. [Google Scholar] [CrossRef]
- Dworking, M. The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; ISBN 978-0-387-25494-4. [Google Scholar]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J.P.; Carrère, H. Do Furanic and Phenolic Compounds of Lignocellulosic and Algae Biomass Hydrolyzate Inhibit Anaerobic Mixed Cultures? A Comprehensive Review. Biotechnol. Adv. 2014, 32, 934–951. [Google Scholar] [CrossRef]
- Jensen, M.B.; de Jonge, N.; Dolriis, M.D.; Kragelund, C.; Fischer, C.H.; Eskesen, M.R.; Noer, K.; Møller, H.B.; Ottosen, L.D.M.; Nielsen, J.L.; et al. Cellulolytic and Xylanolytic Microbial Communities Associated with Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion. Front. Microbiol. 2021, 12, 645174. [Google Scholar] [CrossRef]
- Wikandari, R.; Gudipudi, S.; Pandiyan, I.; Millati, R.; Taherzadeh, M.J. Inhibitory Effects of Fruit Flavors on Methane Production during Anaerobic Digestion. Bioresour. Technol. 2013, 145, 188–192. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Luo, T.; Shi, Z.; Angelidaki, I.; Zhang, S.; Luo, G. Microbial Shifts in Anaerobic Digestion Towards Phenol Inhibition with and Without Hydrochar as Revealed by Metagenomic Binning. J. Hazard. Mater. 2022, 440, 129718. [Google Scholar] [CrossRef] [PubMed]
- Faisal, S.; Thakur, N.; Jalalah, M.; Harraz, F.A.; Al-Assiri, M.S.; Saif, I.; Ali, G.; Zheng, Y.; Salama, E.S. Facilitated Lignocellulosic Biomass Digestibility in Anaerobic Digestion for Biomethane Production: Microbial Communities’ Structure and Interactions. J. Chem. Technol. Biotechnol. 2021, 96, 1798–1817. [Google Scholar] [CrossRef]
- Fitamo, T.; Treu, L.; Boldrin, A.; Sartori, C.; Angelidaki, I.; Scheutz, C. Microbial Population Dynamics in Urban Organic Waste Anaerobic Co-Digestion with Mixed Sludge During a Change in Feedstock Composition and Different Hydraulic Retention Times. Water Res. 2017, 118, 261–271. [Google Scholar] [CrossRef]
- Hinks, J.; Edwards, S.; Sallis, P.J.; Caldwell, G.S. The Steady State Anaerobic Digestion of Laminaria Hyperborea—Effect of Hydraulic Residence on Biogas Production and Bacterial Community Composition. Bioresour. Technol. 2013, 143, 221–230. [Google Scholar] [CrossRef]
- Batstone, D.J.; Tait, S.; Starrenburg, D. Estimation of Hydrolysis Parameters in Full-Scale Anerobic Digesters. Biotechnol. Bioeng. 2009, 102, 1513–1520. [Google Scholar] [CrossRef]
- Cherkasov, N.; Adams, S.J.; Bainbridge, E.G.A.; Thornton, J.A.M. Continuous Stirred Tank Reactors in Fine Chemical Synthesis for Efficient Mixing, Solids-Handling, and Rapid Scale-Up. React. Chem. Eng. 2022, 8, 266–277. [Google Scholar] [CrossRef]
- Kuroda, K.; Shinshima, F.; Tokunaga, S.; Noguchi, T.Q.P.; Yamauchi, M.; Nobu, M.K.; Narihiro, T.; Yamada, M. Assessing the Effect of Green Tuff as a Novel Natural Inorganic Carrier on Methane-Producing Activity of an Anaerobic Sludge Microbiome. Environ. Technol. Innov. 2021, 24, 101835. [Google Scholar] [CrossRef]
- Moestedt, J.; Nordell, E.; Hallin, S.; Schnürer, A. Two-Stage Anaerobic Digestion for Reduced Hydrogen Sulphide Production. J. Chem. Technol. Biotechnol. 2016, 91, 1055–1062. [Google Scholar] [CrossRef]
- Duan, Y.; Pandey, A.; Zhang, Z.; Awasthi, M.K.; Bhatia, S.K.; Taherzadeh, M.J. Organic Solid Waste Biorefinery: Sustainable Strategy for Emerging Circular Bioeconomy in China. Ind. Crops Prod. 2020, 153, 112568. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Li, C.; Chen, C.; Wu, X.; Tsang, C.W.; Mou, J.; Yan, J.; Liu, Y.; Lin, C.S.K. Recent Advancement in Lignin Biorefinery: With Special Focus on Enzymatic Degradation and Valorization. Bioresour. Technol. 2019, 291, 121898. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Feijoo, G.; Moreira, M.T. Process Modelling and Environmental Assessment on the Valorization of Lignocellulosic Waste to Antimicrobials. Food Bioprod. Process. 2023, 137, 113–123. [Google Scholar] [CrossRef]
- Grandas Tavera, C.; Raab, T.; Holguin Trujillo, L. Valorization of Biogas Digestate as Organic Fertilizer for Closing the Loop on the Economic Viability to Develop Biogas Projects in Colombia. Clean. Circ. Bioecon. 2023, 4, 100035. [Google Scholar] [CrossRef]
- Vaish, B.; Srivastava, V.; Singh, U.K.; Gupta, S.K.; Chauhan, P.S.; Kothari, R.; Singh, R.P. Explicating the Fertilizer Potential of Anaerobic Digestate: Effect on Soil Nutrient Profile and Growth of Solanum melongena L. Environ. Technol. Innov. 2022, 27, 102471. [Google Scholar] [CrossRef]
- Horta, C.; Carneiro, J.P. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Appl. Sci. 2022, 12, 248. [Google Scholar] [CrossRef]
- Parra-Orobio, B.A.; Rotavisky-Sinisterra, M.P.; Pérez-Vidal, A.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Physicochemical, Microbiological Characterization and Phytotoxicity of Digestates Produced on Single-Stage and Two-Stage Anaerobic Digestion of Food Waste. Sustain. Environ. Res. 2021, 31, 11. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; le Saché, E.; Pastor-Pérez, L.; Reina, T.R. Membrane-Based Technologies for Biogas Upgrading: A Review. Environ. Chem. Lett. 2020, 18, 1649–1658. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas Upgrading and Utilization: Current Status and Perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Bassani, I.; Kougias, P.G.; Treu, L.; Angelidaki, I. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 2015, 49, 12585–12593. [Google Scholar] [CrossRef] [PubMed]
- Bywater, A.; Heaven, S.; Zhang, Y.; Banks, C.J. Potential for Biomethanisation of CO2 from Anaerobic Digestion of Organic Wastes in the United Kingdom. Processes 2022, 10, 1202. [Google Scholar] [CrossRef]
- Aworanti, O.A.; Ajani, A.O.; Agbede, O.O.; Agarry, S.E.; Ogunkunle, O.; Laseinde, O.T.; Kalam, M.A.; Fattah, I.M.R. Enhancing and Upgrading Biogas and Biomethane Production in Anaerobic Digestion: A Comprehensive Review. Front. Energy Res. 2023, 11, 1170133. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. The Inhibition of Anaerobic Digestion by Model Phenolic Compounds Representative of Those from Sargassum muticum. J. Appl. Phycol. 2019, 31, 779–786. [Google Scholar] [CrossRef]
- Theodoropoulou, A.; Bagaki, D.A.; Gaspari, M.; Kougias, P.; Treu, L.; Campanaro, S.; Hidalgo, D.; Timmers, R.A.; Zrimec, M.B.; Reinhardt, R.; et al. Technological Approaches for the Capture and Reuse of Biogenic Carbon Dioxide Towards Sustainable Anaerobic Digestion. Sustainability 2025, 17, 10385. [Google Scholar] [CrossRef]
- Grigorescu, A.; Lincaru, C.; Dincer, H.; Sahil, S.; Nanda, S. Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review. Sustainability 2025, 17, 6553. [Google Scholar] [CrossRef]
- Neves, L.A.; Afonso, C.; Coelhoso, I.M.; Crespo, J.G. Integrated CO2 Capture and Enzymatic Bioconversion in Supported Ionic Liquid Membranes. Sep. Purif. Technol. 2012, 97, 34–41. [Google Scholar] [CrossRef]
- Morris, J.; Scott Matthews, H.; Morawski, C. Review and Meta-Analysis of 82 Studies on End-of-Life Management Methods for Source Separated Organics. Waste Manag. 2013, 33, 545–551. [Google Scholar] [CrossRef]
- Di Maria, F.; Micale, C. Life Cycle Analysis of Incineration Compared to Anaerobic Digestion Followed by Composting for Managing Organic Waste: The Influence of System Components for an Italian District. Int. J. Life Cycle Assess. 2015, 20, 377–388. [Google Scholar] [CrossRef]
- Orlandella, I.; Fiore, S. Life Cycle Assessment of the Production of Biofertilizers from Agricultural Waste. Sustainability 2025, 17, 421. [Google Scholar] [CrossRef]
- Tian, H.; Ee, A.W.L.; Yan, M.; Tiong, Y.W.; Tan, W.; Tan, Q.; Lam, H.T.; Zhang, J.; Tong, Y.W. Life Cycle Assessment and Cost-Benefit Analysis of Small-Scale Anaerobic Digestion System Treating Food Waste Onsite Under Different Operational Conditions. Bioresour. Technol. 2023, 390, 129902. [Google Scholar] [CrossRef] [PubMed]
- Kitzes, J. An Introduction to Environmentally-Extended Input-Output Analysis. Resources 2013, 2, 489–503. [Google Scholar] [CrossRef]
- Salehpour, T.; Khanali, M.; Rajabipour, A. Environmental Impact Assessment for Ornamental Plant Greenhouse: Life Cycle Assessment Approach for Primrose Production. Environ. Pollut. 2020, 266, 115258. [Google Scholar] [CrossRef]
- Sahle, A.; Potting, J. Environmental Life Cycle Assessment of Ethiopian Rose Cultivation. Sci. Total Environ. 2013, 443, 163–172. [Google Scholar] [CrossRef]
- Alig, M.; Frischknecht, R. Life Cycle Assessment Cut Roses Migros-Genossenschafts-Bund (MGB); Fairtrade: Uster, Switzerland, 2018. [Google Scholar]
- Wandl, M.T.; Haberl, H. Greenhouse Gas Emissions of Small Scale Ornamental Plant Production in Austria—A Case Study. J. Clean. Prod. 2017, 141, 1123–1133. [Google Scholar] [CrossRef]
- Havardi-Burger, N.; Mempel, H.; Bitsch, V. Sustainability Challenges and Innovations in the Value Chain of Flowering Potted Plants for the German Market. Sustainability 2020, 12, 1905. [Google Scholar] [CrossRef]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Geschke, A. Building Eora: A Global Multi-Region Input–Output Database at High Country and Sector Resolution. Econ. Syst. Res. 2013, 25, 20–49. [Google Scholar] [CrossRef]




| Plant Species | Plant Part | Treatment | Concentration % | Duration h | Temperature °C | BMP mLCH4·g−1VS | BMP SD | References |
|---|---|---|---|---|---|---|---|---|
| Rose | Stalks | NaOH | 0 | 72 | 55 | 82 | ±13.1 | Liang et al., 2016 [22] |
| Rose | Stalks | NaOH | 1 | 72 | 55 | 89 | ±8.2 | “ |
| Rose | Stalks | NaOH | 2 | 72 | 55 | 96 | ±26.4 | “ |
| Rose | Stalks | NaOH | 4 | 72 | 55 | 118 | ±15.9 | “ |
| Marigold | n.a. | NaOH | 8 | 1 | 130 | 295 | n.a. | Poveda & Alazate, 2021 [24] |
| Marigold | Petals | Autoclave | n.a. | n.a. | 120 | 193 | n.a. | Pandey and Dhoble, 2025 [37] |
| Marigold | Petals | Untreated | n.a. | n.a. | n.a. | 221 | n.a. | “ |
| Marigold | Petals | Fungal treated | n.a. | n.a. | 30 | 206 | n.a. | “ |
| Sunflower | Head | n.a. | n.a. | n.a. | n.a. | 211 | ±1.9 | Zhurka et al., 2019 [38] |
| Sunflower | Stalks | n.a. | n.a. | n.a. | n.a. | 128 | ±5.2 | “ |
| Sunflower | Head | NaOH | 4 | 24 | 55 | 268 | ±3.4 | “ |
| Sunflower | Stalks | NaOH | 4 | 24 | 55 | 168 | ±6.8 | “ |
| Sunflower | Head | NaOH | 8 | 24 | 35 | 193 | ±3.5 | “ |
| Sunflower | Head | NaOH | 8 | 24 | 35 | 187 | ±2.5 | “ |
| Sunflower | Stalks | n.a. | n.a. | n.a. | n.a. | 192 | ±2 | Monlau et al., 2012 [39] |
| Sunflower | Stalks | Thermal treatment | n.a. | 24 | 55 | 198 | ±11 | “ |
| Sunflower | Stalks | NaOH | 4 | 24 | 55 | 259 | ±6 | “ |
| Sunflower | Stalks | H2O2 | 4 | 24 | 55 | 256 | ±2 | “ |
| Sunflower | Stalks | Ca(OH)2 | 4 | 24 | 55 | 241 | ±13 | “ |
| Sunflower | Stalks | n.a. | n.a. | 1 h | 170 | 219 | ±8 | “ |
| Sunflower | Stalks | FeCl3 | 10 | 1 h | 170 | 248 | ±6 | “ |
| Sunflower | Stalks | HCL | 4 | 1 h | 170 | 233 | ±2 | “ |
| Safflower | Straw | n.a. | n.a. | n.a. | n.a. | 97 | n.a. | Hashemi et al., 2019 [25,54] |
| Safflower | Straw | Hydrothermal | n.a. | 1 | 120 | 191 | n.a. | “ |
| Safflower | Straw | Hydrothermal | n.a. | 1 | 180 | 407 | n.a. | “ |
| Tulips | Whole plants | Chaff (M) | n.a. | n.a. | n.a. | 375 * | n.a. | Frankowski et al., 2020 [25] |
| Tulips | Whole plants | Macerate (M) | n.a. | n.a. | n.a. | 371 * | n.a. | “ |
| Roses | Whole plants | Chaff (M) | n.a. | n.a. | n.a. | 316 * | n.a. | “ |
| Sunflower | Whole plants | Chaff (M) | n.a. | n.a. | n.a. | 278 * | n.a. | “ |
| Chrysanthemums | Whole plants | Chaff (M) | n.a. | n.a. | n.a. | 248 * | n.a. | “ |
| Cup Plant | Whole plant | Silage | n.a. | n.a. | n.a. | 289 ** | ±24.5 | Schmidt et al., 2018 [36] |
| Virginia mallow | Whole plant | Silage | n.a. | n.a. | n.a. | 314 ** | ±19.1 | “ |
| Reed canary grass | Whole plant | Silage | n.a. | n.a. | n.a. | 355 ** | ±19.8 | “ |
| Tall Wheatgrass | Whole plant | Silage | n.a. | n.a. | n.a. | 389 ** | ±25.2 | “ |
| Wild plant mix (25 species) | Whole plant | Silage | n.a. | n.a. | n.a. | 218 ** | ±5.3 | “ |
| Giant Knotweed | Whole plant | Silage | n.a. | n.a. | n.a. | 147 ** | ±9.5 | “ |
| Cup Plant | Whole plant | Silage | n.a. | n.a. | n.a. | 272 *** | ±19.8 | “ |
| Virginia mallow | Whole plant | Silage | n.a. | n.a. | n.a. | 213 *** | ±27.9 | “ |
| Reed canary grass | Whole plant | Silage | n.a. | n.a. | n.a. | 315 *** | ±5 | “ |
| Tall Wheatgrass | Whole plant | Silage | n.a. | n.a. | n.a. | 336 *** | ±20.5 | “ |
| Wild plant mix (25 species) | Whole plant | Silage | n.a. | n.a. | n.a. | 208 *** | ±8.5 | “ |
| Giant Knotweed | Whole plant | Silage | n.a. | n.a. | n.a. | 132 *** | ±4.5 | “ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Popich, M.R.; Nogueira, M.; Fragoso, R. Anaerobic Digestion of Flower Waste: A Mini Review on Biomethane Potential, Process Optimization, and Sustainability Perspectives. Energies 2026, 19, 289. https://doi.org/10.3390/en19020289
Popich MR, Nogueira M, Fragoso R. Anaerobic Digestion of Flower Waste: A Mini Review on Biomethane Potential, Process Optimization, and Sustainability Perspectives. Energies. 2026; 19(2):289. https://doi.org/10.3390/en19020289
Chicago/Turabian StylePopich, Mariana Rodriguez, Miguel Nogueira, and Rita Fragoso. 2026. "Anaerobic Digestion of Flower Waste: A Mini Review on Biomethane Potential, Process Optimization, and Sustainability Perspectives" Energies 19, no. 2: 289. https://doi.org/10.3390/en19020289
APA StylePopich, M. R., Nogueira, M., & Fragoso, R. (2026). Anaerobic Digestion of Flower Waste: A Mini Review on Biomethane Potential, Process Optimization, and Sustainability Perspectives. Energies, 19(2), 289. https://doi.org/10.3390/en19020289

