Partial Discharge Pattern Recognition of GIS with Time–Frequency Energy Grayscale Maps and an Improved Variational Bayesian Autoencoder
Abstract
1. Introduction
2. The Design of PD-UHF Signal Sampling and Denoising Method Based on D-AMP
2.1. The Framework of D-AMP
2.2. The Denoising of PD-UHF Signals
2.2.1. Adaptability Analysis of BM3D
2.2.2. The Calculation of Denoiser Divergence
2.3. The Iterative Process of D-AMP
2.4. Parameter Optimization of D-AMP Based on State Evolution
3. PD Pattern Recognition Method Based on Time–Frequency Energy Grayscale Images and Improved Variational Bayesian Autoencoder
3.1. The Construction of Time–Frequency Energy Grayscale Images for PD Signals
3.2. The Improved Variational Bayesian Autoencoder
3.2.1. The Design of Patch-Level Convolutional Encoder
3.2.2. The Modeling of Gaussian Mixture (GM) Latent Space
3.2.3. The Design of Reconstruction Decoder
3.3. The Optimized Design of Loss Function
3.4. Unsupervised Classification and Uncertainty Quantification
3.4.1. The Training of IVBAE Model
3.4.2. Unsupervised Classification of DPs
3.4.3. The Quantification of Classification Uncertainty
4. Results
4.1. Experimental Data
- Frequency response
- 2.
- Voltage Standing Wave Ratio (VSWR)
- 3.
- Low-noise amplifier (LNA) matching
4.2. The Verification of Signal Denoising Based on D-AMP
4.3. Time–Frequency Energy Feature Extraction Based on HHT
4.4. IVBAE Classification and Confidence Quantification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.; Tian, J.; Zhang, X.; Liu, J.; Lu, C. A Flexible Planarized Biconical Antenna for Partial Discharge Detection in Gas-Insulated Switchgear. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2432–2436. [Google Scholar] [CrossRef]
- Shu, Z.; Wang, W.; Yang, C.; Guo, Y.; Ji, J.; Yang, Y.; Shi, T.; Zhao, Z.; Zheng, Y. External Partial Discharge Detection of Gas-Insulated Switchgears Using a Low-Noise and Enhanced-Sensitivity UHF Sensor Module. IEEE Trans. Instrum. Meas. 2023, 72, 1–10. [Google Scholar] [CrossRef]
- Partyka, M.; Bridges, G.E.; Kordi, B. Online Partial Discharge Measurements in an Operating Generator Stator Winding Using Uhf Antennas. IEEE Trans. Dielectr. Electr. Insul. 2023, 31, 1593–1602. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, C.; Hou, C.; Lin, X.; Du, B. UHF Sensor for Partial Discharge Detection Based on Coplanar Waveguide Feeding. IEEE Sens. J. 2024, 24, 28119–28128. [Google Scholar] [CrossRef]
- Kameli, S.M.; Refaat, S.S.; Abu-Rub, H.; Darwish, A.; Ghrayeb, A.; Olesz, M. Ultrawideband Vivaldi Antenna with an Integrated Noise-Rejecting Parasitic Notch Filter for Online Partial Discharge Detection. IEEE Trans. Instrum. Meas. 2024, 73, 1–10. [Google Scholar] [CrossRef]
- Chang, C.S.; Jin, J.; Chang, C.; Hoshino, T.; Hanai, M.; Kobayashi, N. Separation of Corona Using Wavelet Packet Transform and Neural Network for Detection of Partial Discharge in Gas-Insulated Substations. IEEE Trans. Power Deliv. 2005, 20, 1363–1369. [Google Scholar] [CrossRef]
- Raghavendra, B.; Chaitanya, M.K. Comparative Analysis and Optimal Wavelet Selection of Partial Discharge De-Noising Methods in Gas-Insulated Substation. In Proceedings of the 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, 27–28 February 2017; pp. 1–5. [Google Scholar]
- Satish, L.; Nazneen, B. Wavelet-Based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 354–367. [Google Scholar] [CrossRef]
- Zhongrong, X.; Ju, T.; Caixin, S. Application of Complex Wavelet Transform to Suppress White Noise in GIS UHF PD Signals. IEEE Trans. Power Deliv. 2007, 22, 1498–1504. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Chan, J.C.; Ma, H.; Saha, T.K.; Ekanayake, C. Self-Adaptive Partial Discharge Signal de-Noising Based on Ensemble Empirical Mode Decomposition and Automatic Morphological Thresholding. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 294–303. [Google Scholar] [CrossRef]
- Zhong, J.; Bi, X.; Shu, Q.; Chen, M.; Zhou, D.; Zhang, D. Partial Discharge Signal Denoising Based on Singular Value Decomposition and Empirical Wavelet Transform. IEEE Trans. Instrum. Meas. 2020, 69, 8866–8873. [Google Scholar] [CrossRef]
- Ashtiani, M.B.; Shahrtash, S.M. Partial Discharge De-Noising Employing Adaptive Singular Value Decomposition. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 775–782. [Google Scholar] [CrossRef]
- Li, X.; Ding, D.; Xu, Y.; Jiang, J.; Chen, X.; Yuan, M. A Denoising Method for Partial Discharge Ultrasonic Signals in GIS Based on Ultra-High Frequency Signal Synchronization. IEEE Trans. Power Deliv. 2024, 39, 3316–3325. [Google Scholar] [CrossRef]
- Gao, W.; Ding, D.; Liu, W. Research on the Typical Partial Discharge Using the UHF Detection Method for GIS. IEEE Trans. Power Deliv. 2011, 26, 2621–2629. [Google Scholar] [CrossRef]
- Zhang, S.; Li, C.; Wang, K.; Li, J.; Liao, R.; Zhou, T.; Zhang, Y. Improving Recognition Accuracy of Partial Discharge Patterns by Image-Oriented Feature Extraction and Selection Technique. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1076–1087. [Google Scholar] [CrossRef]
- Kunicki, M.; Cichoń, A. Application of a Phase Resolved Partial Discharge Pattern Analysis for Acoustic Emission Method in High Voltage Insulation Systems Diagnostics. Arch. Acoust. 2018, 43, 235–243. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, S.; Shu, N.; Tang, J.; Li, W. GIS Partial Discharge Pattern Recognition Based on the Chaos Theory. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 783–790. [Google Scholar] [CrossRef]
- Song, H.; Dai, J.; Sheng, G.; Jiang, X. GIS Partial Discharge Pattern Recognition via Deep Convolutional Neural Network under Complex Data Source. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 678–685. [Google Scholar] [CrossRef]
- Peng, X.; Yang, F.; Wang, G.; Wu, Y.; Li, L.; Li, Z.; Bhatti, A.A.; Zhou, C.; Hepburn, D.M.; Reid, A.J. A Convolutional Neural Network-Based Deep Learning Methodology for Recognition of Partial Discharge Patterns from High-Voltage Cables. IEEE Trans. Power Deliv. 2019, 34, 1460–1469. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, M.; Zhang, Y.; Deng, W.; Gong, Y.; Zhang, D. Partial Discharge Pattern Recognition Algorithm of Overhead Covered Conductors Based on Feature Optimization and Bidirectional LSTM-GRU. IET Gener. Transm. Distrib. 2024, 18, 680–693. [Google Scholar] [CrossRef]
- Nguyen, M.-T.; Nguyen, V.-H.; Yun, S.-J.; Kim, Y.-H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies 2018, 11, 1202. [Google Scholar] [CrossRef]
- Lu, S.; Chai, H.; Sahoo, A.; Phung, B.T. Condition Monitoring Based on Partial Discharge Diagnostics Using Machine Learning Methods: A Comprehensive State-of-the-Art Review. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1861–1888. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Li, G.; Rong, M.; Wang, X.; Li, X.; Li, Y. Partial Discharge Patterns Recognition with Deep Convolutional Neural Networks. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 324–327. [Google Scholar]
- Chen, J.; Xu, C.; Li, P.; Shao, X.J.; Li, C.L. Feature Extraction Method for Partial Discharge Pattern in GIS Based on Time-Frequency Analysis and Fractal Theory. High Volt. Eng. 2021, 47, 287–295. [Google Scholar]
- Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From Denoising to Compressed Sensing. IEEE Trans. Inf. Theory 2016, 62, 5117–5144. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, Z.; Wu, H.; Wang, X. Specific Emitter Identification Based on Hilbert–Huang Transform-based Time–Frequency–Energy Distribution Features. IET Commun. 2014, 8, 2404–2412. [Google Scholar] [CrossRef]
- Dang, N.-Q.; Ho, T.-T.; Vo-Nguyen, T.-D.; Youn, Y.-W.; Choi, H.-S.; Kim, Y.-H. Supervised Contrastive Learning for Fault Diagnosis Based on Phase-Resolved Partial Discharge in Gas-Insulated Switchgear. Energies 2023, 17, 4. [Google Scholar] [CrossRef]
- Song, S.; Qian, Y.; Wang, H.; Zang, Y.; Sheng, G.; Jiang, X. Partial Discharge Pattern Recognition Based on 3D Graphs of Phase Resolved Pulse Sequence. Energies 2020, 13, 4103. [Google Scholar] [CrossRef]
- Zemouri, R.; Levesque, M.; Amyot, N.; Hudon, C.; Kokoko, O.; Tahan, S.A. Deep Convolutional Variational Autoencoder as a 2d-Visualization Tool for Partial Discharge Source Classification in Hydrogenerators. IEEE Access 2019, 8, 5438–5454. [Google Scholar] [CrossRef]
- Thi, N.-D.T.; Do, T.-D.; Jung, J.-R.; Jo, H.; Kim, Y.-H. Anomaly Detection for Partial Discharge in Gas-Insulated Switchgears Using Autoencoder. IEEE Access 2020, 8, 152248–152257. [Google Scholar] [CrossRef]
- Ganjun, W.; Fan, Y.; Xiaosheng, P.; Yijiang, W.; Taiwei, L.; Zibo, L. Partial Discharge Pattern Recognition of High Voltage Cables Based on the Stacked Denoising Autoencoder Method. In Proceedings of the 2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 6–8 November 2018; pp. 3778–3792. [Google Scholar]
- Li, Y.; Yang, J.; Cui, Z.; Wang, C.; Gao, T.; Liu, S.; Shu, Z. A Few Shot Partial Discharge Diagnosis Method Based on Dual-Path Variational Autoencoder. In Proceedings of the 2025 IEEE 8th International Electrical and Energy Conference (CIEEC), Changsha, China, 16–18 May 2025; pp. 887–892. [Google Scholar]
- Jing, Q.; Yan, J.; Wang, Y. A Novel Partial Discharge Pattern Recognition for GIS with Unbalanced Sample Based on Conditional Variational Autoencoder. In Proceedings of the 18th International Conference on AC and DC Power Transmission (ACDC 2022), Online, 2–3 July 2022; IET: London, UK, 2022; Volume 2022, pp. 1314–1319. [Google Scholar]
- Huijuan, H.; Gehao, S.; Wenjuan, J. Signal Reconstruction for Partial Discharge Electromagnetic Wave in Substation Based on Signal Model Parameters Identification. High Volt. Eng. 2015, 41, 209–216. [Google Scholar] [CrossRef]
- Li, A.; Wei, G.; Li, S.; Zhang, J.; Zhang, C. Pattern Recognition of Partial Discharge in High-Voltage Cables Using TFMT Model. IEEE Trans. Power Deliv. 2024, 39, 3326–3337. [Google Scholar] [CrossRef]













| Noise Type | Method | ΔSNR (dB) | MSE (×10−3) |
|---|---|---|---|
| Gaussian Noise | WT | 8.1 | 6.9 |
| SVD | 6.5 | 7.2 | |
| D-AMP | 11.8 | 2.1 | |
| Narrowband Interference | WT | 6.1 | 7.9 |
| SVD | 8.5 | 6.2 | |
| D-AMP | 10.7 | 1.7 | |
| Gaussian + Narrowband Interference | WT | 6.3 | 4.5 |
| SVD | 7.8 | 3.1 | |
| D-AMP | 10.5 | 1.3 |
| PD Pattern | NTS | NCC | Acc. (%) | NHCS | PHC (%) |
|---|---|---|---|---|---|
| Metal Spike | 30 | 29 | 96.7 | 28 | 93.3 |
| Floating Potential | 30 | 28 | 93.3 | 26 | 86.7 |
| Free Particle | 30 | 27 | 90.0 | 25 | 83.3 |
| Field Noise | 30 | 28 | 93.3 | 28 | 93.3 |
| Method | Metal Spike (%) | Floating Potential (%) | Free Particle (%) | Average (%) | Mean F1-Score |
|---|---|---|---|---|---|
| SVM | 76.7 | 73.3 | 66.7 | 72.2 | 0.720 |
| CNN (LeNet-5) | 86.7 | 83.3 | 76.7 | 83.3 | 0.821 |
| DBN (3 layers) | 86.7 | 85.0 | 78.3 | 83.9 | 0.838 |
| VAE | 90.0 | 86.7 | 81.7 | 86.1 | 0.859 |
| IVBAE | 96.7 | 93.3 | 90.0 | 93.3 | 0.931 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
He, Y.; Fang, Y.; Zhang, Z.; Zhou, D.; Chen, S.; Jing, S. Partial Discharge Pattern Recognition of GIS with Time–Frequency Energy Grayscale Maps and an Improved Variational Bayesian Autoencoder. Energies 2026, 19, 127. https://doi.org/10.3390/en19010127
He Y, Fang Y, Zhang Z, Zhou D, Chen S, Jing S. Partial Discharge Pattern Recognition of GIS with Time–Frequency Energy Grayscale Maps and an Improved Variational Bayesian Autoencoder. Energies. 2026; 19(1):127. https://doi.org/10.3390/en19010127
Chicago/Turabian StyleHe, Yuhang, Yuan Fang, Zongxi Zhang, Dianbo Zhou, Shaoqing Chen, and Shi Jing. 2026. "Partial Discharge Pattern Recognition of GIS with Time–Frequency Energy Grayscale Maps and an Improved Variational Bayesian Autoencoder" Energies 19, no. 1: 127. https://doi.org/10.3390/en19010127
APA StyleHe, Y., Fang, Y., Zhang, Z., Zhou, D., Chen, S., & Jing, S. (2026). Partial Discharge Pattern Recognition of GIS with Time–Frequency Energy Grayscale Maps and an Improved Variational Bayesian Autoencoder. Energies, 19(1), 127. https://doi.org/10.3390/en19010127
