A New Metric for CO2 Emissions Based on the Interaction Between the Efficiency Ratio Entropy/Marginal Product and Energy Use
Abstract
:1. Introduction
Generalized Entropy Metric Approach
2. The Model
2.1. The Uniqueness of Energy in Economic Production Processes
2.2. The Power Law Based Entropy Model
3. Model Outputs and Discussion
3.1. Entropy-Based Model Outputs
3.2. Entropy and CO2 Emissions
3.3. Presentation of the Entropy Metric of CO2 Emissions
Country-Specific Analysis
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-Source Data Inventory for Anthropogenic CO2, Version 2016 (ODIAC2016); Earth System Science Data: Göttingen, Germany, 2018. [Google Scholar]
- Hertwich, E.G.; Peters, G.P. Carbon Footprint of Nation: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 5687–5692. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. In Ecological Economics Research Trend; Nova Science: New York, NY, USA, 2008. [Google Scholar]
- Nordhaus, W.D. The DICE Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming; Elischolar: New Haven, CT, USA, 2013. [Google Scholar]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019, arXiv:1906.05433. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, M. Errors in Conventional and Input-Output—Based Life—Cycle Inventories. J. Ind. Ecol. 2000, 4, 127–148. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Input–output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation. Ecol. Econ. 2010, 70, 10–18. [Google Scholar] [CrossRef]
- Peters, G.P.; Hertwich, E.G. Post-Kyoto greenhouse gas inventories: Production versus consumption. Clim. Change 2008, 86, 51–66. [Google Scholar] [CrossRef]
- Ang, B.W. Is the energy intensity a less useful indicator than the carbon factor in the study of climate change? Energy Policy 1999, 27, 943–946. [Google Scholar] [CrossRef]
- Rypdal, K.; Winiwarter, W. Uncertainties in greenhouse gas emission inventories—Evaluation, comparability and implications. Environ. Sci. Policy 2001, 4, 107–116. [Google Scholar] [CrossRef]
- Acquaye, A.A.; Wiedmann, T.; Feng, K.; Crawford, R.H.; Barrett, J.; Kuylenstierna, J.; Duffy, A.P.; Koh, S.C.L.; McQueen-Mason, S. Identification of ‘Carbon Hot-Spots’ and Quantification of GHG Intensities in the Biodiesel Supply Chain Using Hybrid LCA and Structural Path Analysis. Environ. Sci. Technol. 2011, 45, 2471–2478. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; de la Rue du Can, S. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States 2009. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Liu, Z.; Geng, Y.; Lindner, S.; Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nat. Clim. Change 2012, 2, 672–675. [Google Scholar] [CrossRef]
- Moss, R.H.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.A.; Elgizouli, I.; Emori, S.; Lin, E.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; IPCC: Noordwijkerhout, The Netherlands, 2007. [Google Scholar]
- Tong, C.J.; Chen, Y.L.; Yeh, J.W.; Lin, S.J.; Chen, S.K.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Ayres, R.U.; Warr, B. The Economic Growth Engine; Edward Elgar Publishing: Cheltenham, UK, 2009. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes. J. Electrochem. Soc. 1963, 110, 97C. [Google Scholar] [CrossRef]
- Faber, M.; Niemes, H.; Stephan, G. Entropy, Environment, and Resources; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Kümmel, R. The Second Law of Economics; Springer: New York, NY, USA, 2011. [Google Scholar]
- Jakimowicz, A. The Role of Entropy in the Development of Economics. Entropy 2020, 22, 452. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Foster, J. Energy, aesthetics and knowledge in complex economic systems. J. Econ. Behav. Organ. 2011, 80, 88–100. [Google Scholar] [CrossRef]
- Bithas, K.; Kalimeris, P. A Brief History of Energy Use in Human Societies. In Revisiting the Energy-Development Link; Springer Briefs in Economics; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Blaug, M. Economic Theory in Retrospect, 4th ed.; Cambridge University Press: Cambridge, UK, 1985; ISBN 978-0521316446. [Google Scholar]
- Stigler, G.J. Essays in the History of Economics; University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Solow, R.M. A Contribution to the Theory of Economic Growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Prescott, E.C. Robert M. Solow’s Neoclassical Growth Model: An Influential Contribution to Economics. Scand. J. Econ. 1988, 90, 7–12. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change; Working Paper No. 3210; National Bureau of Economic Research: Cambridge, MA, USA, 1989. [Google Scholar]
- Lucas, R.E. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Barro, R.J. Government Spending in a Simple Model of Endogenous Growth. J. Political Econ. 1990, 98, 103–125. [Google Scholar] [CrossRef]
- Rodrik, D. One Economics Many Recipes: Globalization, Institutions, and Economic Growth; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Okrasa, W.; Rozkrut, D. The time use data-based measures of the wellbeing effect of community development. In Proceedings of the FCSM2018/Federal Committee on Statistical Methodology Research Conference, Washington, DC, USA, 7–9 March 2018. [Google Scholar]
- Cierpial-Wolan, M. The Modelling of Cross-Border Aspects of Territorial Development; University of Rzeszow Publishing House: Rzeszow, Poland, 2022. [Google Scholar]
- Faisal, F.; Tursoy, T.; Ercantan, O. The relationship between energy consumption and economic growth: Evidence from non-Granger causality test. Procedia Comput. Sci. 2017, 120, 671–675. [Google Scholar] [CrossRef]
- Alam, M. Economic Growth with Energy; MPRA Paper; Northeaster University: Boston, MA, USA, 2006. [Google Scholar]
- Zhang, Z.; Ren, X. Causal Relationships between Energy Consumption and Economic Growth. Energy Procedia 2011, 5, 2065–2071. [Google Scholar]
- Osei-Assibey Bonsu, M.; Wang, Y. The triangular relationship between energy consumption, trade openness and economic growth: New empirical evidence. Cogent Econ. Financ. 2022, 10, 2140520. [Google Scholar] [CrossRef]
- Topolewski, Ł. Relationship between Energy Consumption and Economic Growth in European Countries: Evidence from Dynamic Panel Data Analysis. Energies 2021, 14, 3565. [Google Scholar] [CrossRef]
- Asghar, Z. Energy–GDP Relationship: A Causal Analysis for the Five Countries of South Asia. Appl. Econom. Int. Dev. 2008, 8, 167–180. [Google Scholar]
- Mutumba, G.S.; Odongo, T.; Okurut, N.F.; Bagire, V. A survey of literature on energy consumption and economic growth. Energy Rep. 2021, 7, 9150–9239. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Stern, D.I. The environmental Kuznets curve after 25 years. J. Bioecon. 2017, 19, 7–28. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Shahbaz, M.; Hye, Q.M.A.; Tiwari, A.K.; Leitão, N.C. Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renew. Sustain. Energy Rev. 2013, 25, 109–121. [Google Scholar] [CrossRef]
- Gabaix, X. The Laws of Power in Economics and Finance; BER: Washington, DC, USA, 2008. [Google Scholar]
- Bak, P.; Chen, K.; Scheinkman, J.; Woodford, M. Aggregate Fluctuations from Independent Sectoral Shocks: Self-organized Criticality in a Model of Production and Inventory Dynamics. Ric. Econ. 1993, 47, 3–30. [Google Scholar] [CrossRef]
- Filip, D.; Miziołek, T. Market concentration in the Polish investment fund industry. Gospod. Narodowa. Pol. J. Econ. 2019, 300, 53–78. [Google Scholar]
- Bwanakare, S. Non-Extensive Entropy Econometrics for Low Frequency Series: National Accounts-Based Inverse Problems; De Gruyter Open Poland: Warsaw, Poland, 2018. [Google Scholar]
- Jakimowicz, A. The Material Entropy and the Fourth Law of Thermodynamics in the Evaluation of Energy Technologies of the Future. Energies 2023, 16, 3861. [Google Scholar] [CrossRef]
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Random House: New York, NY, USA, 2007; ISBN 978-1400063512. [Google Scholar]
- Gabaix, X. Power Laws in Economics: An Introduction. J. Econ. Perspect. 2016, 30, 185–206. [Google Scholar] [CrossRef]
- Golan, A.; Judge, G.; Miller, D. Maximum Entropy Econometrics: Robust Estimation with Limited Data; Wiley: Chichester, UK, 1996. [Google Scholar]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Yule, G.U. A mathematical theory of evolution based on the conclusions of Dr. JC Willis FRS. Phil. Trans. R. Soc. B 1925, 213, 21–87. [Google Scholar]
- Champernowne, D.G. A Model of Income Distribution. Econ. J. 1953, 63, 318–351. [Google Scholar] [CrossRef]
- Simon, H.A. On a class of skew distribution functions. Biometrika 1955, 42, 425–440. [Google Scholar] [CrossRef]
- Kesten, H. Limit theorems for stochastic growth models. Adv. Appl. Probab. 1972, 4, 393–428. [Google Scholar] [CrossRef]
- Jessen, H.A.; Mikosch, T. Regularly Varying Functions. Publ. L’institut Mathématique 2006, 80, 171–192. [Google Scholar] [CrossRef]
- Bottazzi, G.; Cefis, E.; Dosi, G.; Secchi, A. Invariances and Diversities in the Patterns of Industrial Evolution: Some Evidence from Italian Manufacturing Industries. Small Bus. Econ. 2007, 29, 137–159. [Google Scholar] [CrossRef]
- Amaral, L.A.N.; Buldyrev, S.V.; Havlin, S.; Salinger, M.A.; Stanley, H.E. Power Law Scaling for a System of Interacting Units with Complex Internal Structure. Phys. Rev. Lett. 1998, 80, 1385. [Google Scholar] [CrossRef]
- Eurostat. Eurostat [Online] EU. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/ten00122/default/table?lang=en (accessed on 19 December 2024).
- Bwanakare, S. Energy Efficiency Forecast as an Inverse Stochastic Problem: A Cross-Entropy Econometrics Approach. Energies 2023, 16, 7715. [Google Scholar] [CrossRef]
- Rak, R.; Grech, D. Quantitative approach to multifractality induced by correlations and broad distribution of data. Phys. A Stat. Mech. Its Appl. 2018, 508, 48–66. [Google Scholar] [CrossRef]
- Moser, S.; Kainz, C.; Loy, C. Entropy as a measure for assessing the sustainability of production systems. Sustainability 2021, 4, 1761. [Google Scholar]
- Warr, B.; Ayres, R.U. Entropy, resources, and economic growth. Ecol. Econ. 2022, 193, 107295. [Google Scholar]
- Qin, Q.; Liu, Y.; Li, X. Entropy-emission-economic growth nexus in China: Evidence from a panel quantile framework. Energy Rep. 2021, 4769–4778. [Google Scholar]
- Korhonen, J.; Snäkin, J.P. Quantifying the relationship between energy consumption, CO2 emissions, and entropy metrics for chemical manufacturing processes. J. Clean. Prod. 2020, 246, 119005. [Google Scholar]
- Casazza, M.; Manfren, M. The role of entropy in assessing the circularity of economic systems. Entropy 2022, 5, 600. [Google Scholar]
- Alcott, B.; Giampietro, M.; Mayumi, K.; Polimeni, J. Historical Overview of the Jevons paradox in the Literature. In The Jevons Paradox and the Myth of Resource Efficiency Improvements; Polimeni, J.M., Mayumi, K., Giampietro, M., Eds.; Earthscan: Oxford, UK, 2008; pp. 7–78. [Google Scholar]
- Hwang, Y.; Um, J.-S.; Hwang, J.; Schlüter, S. Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO2 Flux. Energies 2020, 13, 6009. [Google Scholar] [CrossRef]
- Yamaji, K.; Matsuhashi, R.; Nagata, Y.; Kaya, Y. A study on economic measures for CO2 reduction in Japan. Energy Policy 1993, 21, 123–132. [Google Scholar] [CrossRef]
Metric Approach | Sample Empirical Output | Source |
---|---|---|
Life Cycle Assessment (LCA) | Electric Vehicle Production: 8.8 tonnes CO2e per vehicle (Tesla Model 3 cradle-to-gate) | Tesla Impact Report 2022 |
Carbon Footprint Analysis | Coca-Cola Company: 3.7 million tonnes CO2e (2022, Scope 1 and 2) | Coca-Cola ESG Report 2022 |
Input–Output Analysis | US Manufacturing Sector: 1.4 tonnes CO2e per USD 1 M output (2020) | US EPA GHGRP Data 2020 |
Process Analysis | Cement Production: 842 kg CO2e per tonne of cement (Direct emissions) | Global Cement and Concrete Association (GCCA) Sustainability Report 2023 |
Hybrid Methods | Global Smartphone Production: 55 kg CO2e per device | Apple Environmental Progress Report 2023 (iPhone 14 lifecycle assessment) |
Country | Estimates | Model R2 _Equivalent | Optimal Entropy Values | |
---|---|---|---|---|
Beta | Constant | |||
Denmark | 5.443 | 1.335 | 0.876 | 0.435 |
Belgium | 3.836 | 1 | 0.918 | 0.45 |
Germany | 4.867 | 1.089 | 0.937 | 0.488 |
Netherlands | 4.279 | 1.603 | 0.334 | 0.496 |
Czechia | 2.963 | 0.872 | 0.955 | 0.52 |
Ireland | 3.731 | 2.417 | 0.565 | 0.525 |
France | 5.037 | 0.71 | 0.951 | 0.528 |
Estonia | 2.204 | 0.832 | 0.943 | 0.552 |
Poland | 3.065 | 0.742 | 0.982 | 0.552 |
Bulgaria | 2.01 | 0.575 | 0.982 | 0.555 |
Model: OLS, using observations 1–10 Dependent variable: CO2_capita Heteroskedasticity-robust standard errors, variant HC1 | |||||||
Coefficient | Std. Error | z | p-Value | ||||
Energy-cons (β) | 1.09547 | 0.106561 | 10.28 | <0.0001 | |||
Entropy/beta (µ × β) | −1.04739 | 0.0385283 | −27.19 | <0.0001 | |||
Mean dependent var | 2.210201 | S.D. dependent var | 0.240875 | ||||
Sum squared resid | 0.463154 | S.E. of regression | 0.240612 | ||||
R-squared | 0.990619 | Adjusted R-squared | 0.989446 | ||||
F(2, 8) | 435.3399 | p-value (F) | 6.87 × 10−9 | ||||
Log-likelihood | 1.172016 | Akaike criterion | 1.655969 | ||||
Schwarz criterion | 2.261139 | Hannan-Quinn | 0.992099 |
Country | Year | Predicted | Actual | Error (%) |
---|---|---|---|---|
Belgium | 2020 | 5636.59 | 7905.33 | −28.70% |
2021 | 6101.36 | 8200.45 | −25.60% | |
2022 | 5440.06 | 7645.03 | −28.84% | |
Bulgaria | 2020 | 3151.34 | 5284.98 | −40.37% |
2021 | 3457.56 | 6168.93 | −43.95% | |
2022 | 3354.21 | 6880.55 | −51.25% | |
Czechia | 2020 | 4977.23 | 8689.35 | −42.72% |
2021 | 5503.07 | 9177.49 | −40.04% | |
2022 | 5091.47 | 8910.88 | −42.86% | |
Denmark | 2020 | 5390.49 | 4851.91 | 11.10% |
2021 | 5728.06 | 5051.84 | 13.39% | |
2022 | 5286.29 | 4816.54 | 9.75% | |
Estonia | 2020 | 5872.00 | 6917.67 | −15.12% |
2021 | 6036.80 | 7802.32 | −22.63% | |
2022 | 5754.83 | 8708.43 | −33.92% | |
France | 2020 | 4807.96 | 4255.96 | 12.97% |
2021 | 5344.42 | 4624.56 | 15.57% | |
2022 | 5034.34 | 4428.38 | 13.68% | |
Germany | 2020 | 5411.34 | 7752.80 | −30.20% |
2021 | 5523.96 | 8109.93 | −31.89% | |
2022 | 5204.12 | 7985.51 | −34.83% | |
Ireland | 2020 | 7379.12 | 7049.42 | 4.68% |
2021 | 7418.65 | 7466.40 | −0.64% | |
2022 | 7197.81 | 7184.21 | 0.19% | |
Netherlands | 2020 | 7237.86 | 7749.17 | −6.60% |
2021 | 7488.66 | 7878.13 | −4.94% | |
2022 | 6580.37 | 7106.68 | −7.41% | |
Poland | 2020 | 6413.02 | 7923.10 | −19.06% |
2021 | 7082.41 | 8700.76 | −18.60% | |
2022 | 6750.30 | 8207.27 | −17.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bwanakare, S.; Cierpiał-Wolan, M.; Rzeczkowski, D. A New Metric for CO2 Emissions Based on the Interaction Between the Efficiency Ratio Entropy/Marginal Product and Energy Use. Energies 2025, 18, 1895. https://doi.org/10.3390/en18081895
Bwanakare S, Cierpiał-Wolan M, Rzeczkowski D. A New Metric for CO2 Emissions Based on the Interaction Between the Efficiency Ratio Entropy/Marginal Product and Energy Use. Energies. 2025; 18(8):1895. https://doi.org/10.3390/en18081895
Chicago/Turabian StyleBwanakare, Second, Marek Cierpiał-Wolan, and Daniel Rzeczkowski. 2025. "A New Metric for CO2 Emissions Based on the Interaction Between the Efficiency Ratio Entropy/Marginal Product and Energy Use" Energies 18, no. 8: 1895. https://doi.org/10.3390/en18081895
APA StyleBwanakare, S., Cierpiał-Wolan, M., & Rzeczkowski, D. (2025). A New Metric for CO2 Emissions Based on the Interaction Between the Efficiency Ratio Entropy/Marginal Product and Energy Use. Energies, 18(8), 1895. https://doi.org/10.3390/en18081895