Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaporative Cooling System and Study Area
2.2. Volcanic Stone Cooling Pads
2.3. Experiment Planning
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Pad Thickness on Cooling Efficiency
3.2. Effect of Water Addition Rate on Cooling Efficiency
3.3. Effect of Pad Thickness on Water Consumption
3.4. Effect of Air Speed on Water Consumption
3.5. Effect of Water Addition Rate on Water Consumption
3.6. Effect of Pad Thickness on the Pressure Drop on Both Sides of the Pad
3.7. Effect of Air Speed on the Pressure Drop on Both Sides of the Pad
3.8. Effect of Water Adding Rate on the Pressure Drop on Both Sides of the Pad
3.9. Comparison Between Cooling Efficiency of Volcanic Stone Pads and Commercial Cellulosic Pads
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Alzahrani, S.M.; Alsadon, A.A.; Ali, I.M.; Elleithy, R.M. Covering materials incorporating radiation-preventing techniques to meet greenhouse-cooling challenges in arid regions: A review. Sci. World J. 2012, 2012, 906360. [Google Scholar] [CrossRef]
- Bucklin, R.A.; Leary, J.D.; McConnell, D.B.; Wilkerson, E.G. Fan and Pad Greenhouse Evaporative Cooling Systems; CIR1135; IFAS Extension, University of Florida: Homestead, FL, USA, 2004; pp. 1–7. [Google Scholar]
- Bhatia, B.E. Instructor, PDH online Course M231 (4 PDH). In Principles of Evaporative Cooling System; PDH Center: Fairfax, VA, USA, 2012; pp. 1–56. [Google Scholar]
- Dzivama, A.U.; Bindir UB Aboaba, F.O. Evaluation of pad materials in construction of active evaporative cooler for storage of fruits and vegetables in arid environments. Agric. Mech. Asia Afr. Lat. Am. AMA 1999, 30, 51–55. [Google Scholar]
- Chopra, M.K.; Kumar, R. Design of New Evaporative Cooler and Usage of Different Cooling Pad Materials for Improved Cooling Efficiency. Int. Res. J. Eng. Technol. IRJET 2017, 4, 503–511. [Google Scholar]
- Kapilan, N.; Isloor, A.M.; Karinka, S. A comprehensive review on evaporative cooling systems. Results Eng. 2023, 18, 101059. [Google Scholar] [CrossRef]
- Awafoa, E.A.; Nketsiah, S.; Alhassan, M.; Appiah, E. Design, construction, and performance evaluation of an evaporative cooling system for tomatoes storage. Agric. Eng. 2020, 24, 1–12. [Google Scholar]
- Akram, W.; Badholiya, S.K. Performance Analysis of Direct Evaporative Coolers Using Various Cooling Pad Materials: A Comparative Study. Int. J. Res. Publ. Rev. 2024, 5, 5947–5954. [Google Scholar]
- Watson, J.A.; Gomez, C.; Bucklin, R.A.; Leary, J.D.; McConnell, D.B. Fan and Pad Greenhouse Evaporative Cooling Systems. Available online: https://edis.ifas.ufl.edu/publication/AE069 (accessed on 3 April 2025).
- Ferdous, A.; Ahmad, S.; Asif, K.; Gowtam, M.; Nazmul, A.; Rahman, D. An Experimental Study on the Design, Performance and Suitability of Evaporative Cooling System using Different Indigenous Materials. AIP Conf. Proc. 2017, 1851, 020075. [Google Scholar] [CrossRef]
- Jain, J.K.; Hindoliya, D.A. Development and Testing of Regenerative Evaporative Cooler. Int. J. Eng. Trends Technol. 2012, 3, 694–697. [Google Scholar]
- Tinoco, I.D.; Figueiredo, J.L.; Santos, R.C.; da Silva, J.N.; Yanagi, T.; de Paula, M.O.; Corderio, M.B. Comparison of the cooling effect of different materials used in evaporative pads. J. Mod. Manuf. Syst. Technol. 2001, 1, 61–68. [Google Scholar] [CrossRef]
- Liao, C.M.; Chiu, K.H. Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region. Build. Environ. 2002, 37, 177–187. [Google Scholar] [CrossRef]
- Al-Sulaiman, F. Evaluation of the performance of local fibers in evaporative cooling. Energy Convers. Manag. 2002, 43, 2267–2273. [Google Scholar] [CrossRef]
- Kapish, T.D.; Dharme, M.R.; Gawande, K.R. An Experimental Analysis of Direct Evaporative Cooler by Varying materials of Cooling Pad. Int. J. Mech. Prod. Eng. Res. Dev. IJMPERD 2017, 7, 585–590. [Google Scholar]
- Tejero-González, A.; Franco-Salas, A. Optimal operation of evaporative cooling pads: A review. Renew. Sustain. Energy Rev. 2021, 151, 111632. [Google Scholar] [CrossRef]
- Lefers, R.; Davies, P.A.; Almadhoun, N. Proof of Concept: Pozzolan Bricks for Saline Water Evaporative Cooling in Controlled Environment Agriculture. Appl. Eng. Agric. 2018, 34, 929–937. [Google Scholar] [CrossRef]
- Beyene, A.; Merka, H.; Tsige, D. Suitability analysis of vertically installed scoria gravel drains for enhancing consolidation performance of clayey ground. Results Eng. 2023, 17, 100975. [Google Scholar] [CrossRef]
- Fares, G.; Alhozaimy, A.; Al-Negheimish, A.; Alawad, O.A. Characterization of scoria rock from Arabian lava fields as natural pozzolan for use in concrete, European. J. Environ. Civ. Eng. 2022, 26, 39–57. [Google Scholar]
- Aldossari, M.S.; Fares, G.; Ghrefat, H.A. Estimation of pozzolanic activity of scoria rocks using ASTER remote sensing. J. Mater. Civ. Eng. 2019, 31, 04019100. [Google Scholar] [CrossRef]
- Arunkumar, H.S.; Madhwesh, N.; Shenoy, S.; Kumar, S. Performance evaluation of an indirect-direct evaporative cooler using biomass-based packing material. Int. J. Sustain. Eng. 2024, 17, 469–480. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Wiersma, F.; Benham, D.S. Design Criteria for Evaporative Cooling; ASAE Paper No. 74-4527; ASAE: St. Joseph, MI, USA, 1974. [Google Scholar]
- Watt, J.R. Investigation Evaporative Cooling; Report U.S. Naval Civil Engineering Research and Evaluation Laboratory: Port Hueneme, CA, USA, 1953. [Google Scholar]
- He, S.; Guan, Z.; Gurgenci, H.; Hooman, K.; Alkhedhair, A.M. Experimental study of heat transfer coefficient and pressure drop of cellulose corrugated media. In Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December 2014; pp. 8–11. [Google Scholar]
- Jawad, S.K.; Muhammad, I.S. A study of the effect of changing some factors affecting the thermal performance of an evaporative air cooler. Iraqi J. Mech. Eng. Mater. 2009, 9, 249–264. [Google Scholar]
- Gunhan, T.; Demir, V.; Yagcioglu, A. Evaluation of the suitability of some local materials as cooling pads. Biosyst. Eng. 2007, 96, 369–377. [Google Scholar]
- Al-Badri, A.R.; Al-Waaly, A.A. The influence of chilled water on the performance of direct evaporative cooling. J. Energy Build. 2017, 155, 143–150. [Google Scholar]
- Ghoname, M.S. Effect of pad water flow rate on evaporative cooling system efficiency in laying hen housing. J. Agric. Eng. 2020, 1051, 209–219. [Google Scholar] [CrossRef]
- Yan, M.; He, S.; Li, N.; Huang, X.; Gao, M.; Xu, M. Experimental investigation on a novel arrangement of wet medium for evaporative cooling of air. Int. J. Refrig. 2020, 124, 64–74. [Google Scholar] [CrossRef]
- Al-Helal; Al-Tuwaijri. Evaporative Cooling Efficiency of Palm Leaf Pads and Paper Pads with Cross Grooves under Dry Climate Conditions. Egypt. J. Agric. Eng. 2001, 18, 469–483. [Google Scholar]
- Franco, A.; Valera, D.L.; Peña, A. Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads. Energies 2014, 7, 1427–1447. [Google Scholar] [CrossRef]
- Sattar, A.; Salem, S.; Al-Badri, S.B. Rationalization of water consumption for evaporative cooling pads. Iraqi J. Agric. Sci. 2012, 43, 78–82. [Google Scholar]
- Al-Helal, M. A Pilot-Scale Study for Evaluating the Performance of a Fan-Pad Cooling System under Different Climatic Conditions of Saudi Arabia. Misr J. Ag. Eng. 2009, 26, 514–533. [Google Scholar]
- Dağtekin, M.; Karaca, C.; Yıldız, Y.; Başçetinçelik, A.; Paydak, Ö. The effects of air velocity on the performance of pad evaporative cooling systems. Afr. J. Agric. Res. 2011, 6, 1813–1822. [Google Scholar]
- Franco, A.; Valera, D.L.; Madueno, A.; Peña, A. Influence of water and air flow on the performance of cellulose evaporative cooling pads used in Mediterranean greenhouses. Trans. ASABE 2010, 53, 565–576. [Google Scholar] [CrossRef]
- Dhamneya, A.K.; Rajput, S.P.S.; Singh, A. Experimental Performance Analysis of Alternative Cooling Pad Made by Agricultural Waste for Direct Evaporative Cooling System. Int. J. Mech. Eng. Technol. 2017, 8, 7. [Google Scholar]
- Laknizi, A.; Ben Abdellah, A.; Mahdaoui, M.; Anoune, K. Application of Taguchi and ANOVA methods in the optimization of a direct evaporative cooling pad. Int. J. Sustain. Eng. 2021, 14, 1218–1228. [Google Scholar] [CrossRef]
- Elmsaad, E.; Emam, A.; Omran, A. Effect of Utilization of Different Materials and Thicknesses Evaporative Cooling Pad on Cooling Efficiency in Greenhouses in Hot-Arid Regions. Egypt. J. Agron. 2023, 45, 171–187. [Google Scholar]
Pad Type | Air Speed (m·s−1) | Water Addition Rate (kg min−1 m−1) | Pad Thick. (cm) | Efficiency (%) | Reference |
---|---|---|---|---|---|
Volcanic stone | 1.75 | 2.4 | 10 | 82 | Current study |
Cellulose pad | - | - | 7 | 64.38 | [9] |
CELdek pad | 0.6 | - | 15 | 78 | [28] |
CELdek pad | 1 | - | 10 | 68 | [28] |
Cellulose pad | 1.27 | - | 10 | 70 | [33] |
Cellulose pad | 1.4 | - | 10 | 75 | [34] |
Cross–fluted Cellulose pad | 1.25 | 11 | 10 | 77 | [35] |
Cellulose pad | 1 | 4 | 10 | 91 | [36] |
Cellulose pad | 1.5 | 4 | 10 | 78 | [36] |
Cellulose pad | 0.5 | - | 10 | 71 | [37] |
CELdek pad | 1.3 2.7 | 3.6 | 10 | 67.73 65.57 | [38] |
Cellulose pad | 0.5 | - | 10 | 76 | [39] |
CELdek pad | 1.75 | - | 30 | 75.6 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashwan, M.A.; Al-Helal, I.M.; Al-Kahtani, S.M.; Alkoaik, F.N.; Fickak, A.A.; Almasoud, W.A.; Alshamiry, F.A.; Ibrahim, M.N.; Fulleros, R.B.; Shady, M.R. Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System. Energies 2025, 18, 1897. https://doi.org/10.3390/en18081897
Rashwan MA, Al-Helal IM, Al-Kahtani SM, Alkoaik FN, Fickak AA, Almasoud WA, Alshamiry FA, Ibrahim MN, Fulleros RB, Shady MR. Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System. Energies. 2025; 18(8):1897. https://doi.org/10.3390/en18081897
Chicago/Turabian StyleRashwan, Mohamed A., Ibrahim M. Al-Helal, Saad M. Al-Kahtani, Fahad N. Alkoaik, Adil A. Fickak, Waleed A. Almasoud, Faisal A. Alshamiry, Mansour N. Ibrahim, Ronnel B. Fulleros, and Mohamed R. Shady. 2025. "Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System" Energies 18, no. 8: 1897. https://doi.org/10.3390/en18081897
APA StyleRashwan, M. A., Al-Helal, I. M., Al-Kahtani, S. M., Alkoaik, F. N., Fickak, A. A., Almasoud, W. A., Alshamiry, F. A., Ibrahim, M. N., Fulleros, R. B., & Shady, M. R. (2025). Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System. Energies, 18(8), 1897. https://doi.org/10.3390/en18081897