Research on Parameter Tuning of Electro-Hydrostatic Actuator Position Sliding Mode Controller Based on Enhanced Dynamic Sand Cat Search Optimization Algorithm
Abstract
1. Introduction
2. The Mathematical Model of the Electro-Hydrostatic Actuator System
2.1. Mathematical Modeling of Motor Link
2.2. Mathematical Modeling of Machine-Fluid Chain
- (1)
- Piston pump output flow = hydraulic cylinder input flow ;
- (2)
- Plunger pump input flow = hydraulic cylinder output flow .
2.3. Equation for the State of the EHA System
3. The EHA Controller Design
3.1. Design of Machine–Hydraulic Link Controllers
3.2. Design of Motor Link Controller
4. EDSCSO-Based EHA Position Sliding Mode Controller
4.1. Original SCSO
4.2. Proposed EDSCSO
4.2.1. Escape Mechanism (EM)
4.2.2. Random Elite Cooperative Guidance Strategy (RE-CGS)
Algorithm 1 Pseudo-Code of the Each Random Elite Individual Guides k Ordinary Individuals |
Inputs: Random elite individuals , random ordinary individuals. |
Output: . |
For |
. |
End for |
Algorithm 2 Pseudo-Code of the Cooperative Computation |
Inputs: Elite population ( individuals), |
Output: |
For e = 1: |
= |
For d = 1: |
= ; = ; |
If |
= |
End if |
End for |
End for |
4.2.3. Multi-Path Differential Perturbation Strategy (MDPS)
Algorithm 3 Pseudo-Code of the EDSCSO |
Inputs: . |
Output:. Initialize the population. Calculating the fitness function based on the objective function. . For < 360°). . For If > 1.5) Update the population according to Equation (36) or Equation (37). Elseif > 0.75) Update the population according to Equation (40) or Equation (41). Else Update the population according to Equation (42) or Equation (43). End if Retention of the more numerous individuals according to Equation (44). Update the position of the best individual so far. Calculating, comparing and updating the fitness. Each random elite individual guides k ordinary individuals according to Algorithm 1. If (((t < 4/5T)&&(t > T == N)||((t > 4/5T)&&(t == N/3 == 2N/3|| == N)). Cooperative Computation according to Algorithm 2. End if The first differential perturbation stage is performed according to Equations (50) and (51). End for For The second differential perturbation stage is performed according to Equations (50) and (51). End for End for Return . |
4.3. Effectiveness Analysis of Improvement Strategies
4.3.1. Effectiveness of RE-CGS
4.3.2. Effectiveness of MDPS
4.3.3. Complementary Analysis of Improvement Strategies
5. Intermodulation Simulation Verification of EHA System
5.1. EHA Position Slide Mold Controller Parameter Setting
5.2. Comparative Analysis of Simulation Results
- (1)
- PID-related parameters: = 32.4976, = 90.2094.
- (2)
- Pre-optimization sliding mode PID-related parameters: = 69,300; = 260, = 666,520; = 79,235.
- (3)
- SSA post-optimization sliding mode PID-related parameters: = 570,576; = 5.4, = 600,000; = 78,217.
- (4)
- PSO optimized sliding mode PID-related parameters: = 570,576; = 11,395, = 6556, = 65,325.
- (5)
- GWO optimized sliding mode PID-related parameters: = 418,783; = 9395, = 329,354, = 64,040.
- (6)
- Parameters related to sliding mode PID after EDSCSO optimization: = 328,309; = 11,649, = 479,610, = 43,754.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.; Peng, J.; Li, S.; Zhang, J.; Zhang, A. Study on the Vibration Characteristics of Separated Armature Assembly in an Electro-Hydraulic Servo Valve Under Interference Fit. Actuators 2025, 14, 98. [Google Scholar] [CrossRef]
- Stroita, D.C.; Bordeasu, D.; Dragan, F. System Identification of a Servo-Valve Controlled Hydraulic Cylinder Operating Under Variable Load. Mathematics 2025, 13, 341. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Zhang, D.; Lu, F. High-temperature biaxial testing machines in aerospace. Rev. Sci. Instrum. 2025, 96, 031501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jia, P.; Zheng, H.; Wang, G.; Wang, T. A Low-Power Consumption Deepwater Subsea Electric Gate Valve Actuator, Part A: Prototype and Test. J. Mar. Sci. Eng. 2025, 13, 302. [Google Scholar] [CrossRef]
- Jung, Y.; Kwon, K.; Lee, J.; Ko, S.H. Untethered soft actuators for soft standalone robotics. Nat. Commun. 2024, 15, 3510. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Gu, S.; Wu, L.; Wang, N.; Lin, L.; Chen, Z. Research on Optimization of Diesel Engine Speed Control Based on UKF-Filtered Data and PSO Fuzzy PID Control. Processes 2025, 13, 777. [Google Scholar] [CrossRef]
- Ding, G.; Bian, Y.; Yuan, Z.; Geimer, M.; Helian, B.; Chen, L. High-Precision Position Control of Electro-Hydrostatic Actuator Under System Uncertainties. In Proceedings of the IEEE 2024 24th International Conference on Control Automation and Systems (ICCAS), Jeju, Republic of Korea, 29 October–1 November 2024; pp. 201–206. [Google Scholar] [CrossRef]
- Castellanos-Cárdenas, D.; Posada, N.L.; Orozco-Duque, A.; Sepúlveda-Cano, L.M.; Castrillón, F.; Camacho, O.E.; Vásquez, R.E. A Review on Data-Driven Model-Free Sliding Mode Control. Algorithms 2024, 17, 543. [Google Scholar] [CrossRef]
- Liu, J.; Yao, J.; Deng, W. Nonlinear robust adaptive control of Electro-hydrostatic actuators with continuous friction compensation. Int. J. Control Autom. Syst. 2024, 22, 1225–1237. [Google Scholar] [CrossRef]
- Wang, T.; Luo, G.; Cheng, Y.; Tu, W.; Liu, C.; Chen, Z. Robust Finite-Control-Set Model Predictive Torque Control of PMSM Drives Based on Dual Variable Bandwidth ESOs. IEEE Trans. Transp. Electrif. 2024, 10, 8443–8456. [Google Scholar] [CrossRef]
- Ren, B.; Qi, X. Electric Hydrostatic Actuator Position Control System Based on Fuzzy PID. Autom. Instrum. 2018, 33, 10–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X. Study of Electro-hydraulic Actuator Based on PID and Sliding Mode Control. Mach. Tool Hydraul. 2017, 45, 122–126. [Google Scholar] [CrossRef]
- Qian, Q.; Luo, W.; Pan, J.; Song, M.; Feng, Y.; Li, Y. Dual-path differential perturbation sand cat swarm optimization algorithm integrated with escape mechanism. Rev. Sci. Instrum. 2024, 95, 115106. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wu, L.; Huang, X.; Xu, D.; Liu, C.; Xiao, W. Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning. Knowl.-Based Syst. 2024, 288, 111459. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Ibrikci, T. An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation. Multimed. Tools Appl. 2024, 83, 16929–16975. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Z.; Jin, T.; Cheng, J.; Lei, Z.; Gao, S. Information gain ratio-based subfeature grouping empowers particle swarm optimization for feature selection. Knowl.-Based Syst. 2024, 286, 111380. [Google Scholar] [CrossRef]
- Malti, A.N.; Hakem, M.; Benmammar, B. A new hybrid multi-objective optimization algorithm for task scheduling in cloud systems. Clust. Comput. 2024, 27, 2525–2548. [Google Scholar] [CrossRef]
- Ghasemi, M.; Zare, M.; Zahedi, A.; Akbari, M.A.; Mirjalili, S.; Abualigah, L. Geyser inspired algorithm: A new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization. J. Bionic Eng. 2024, 21, 374–408. [Google Scholar] [CrossRef]
- Xia, H.; Ke, Y.; Liao, R.; Sun, Y. Fractional order calculus enhanced dung beetle optimizer for function global optimization and multilevel threshold medical image segmentation. J. Supercomput. 2025, 81, 90. [Google Scholar] [CrossRef]
SCSO | A_1SCSO | A_2SCSO | A_3SCSO | A_12SCSO | A_13SCSO | A_23SCSO | EDSCSO | ||
---|---|---|---|---|---|---|---|---|---|
F3 | AVG | 5.73 × 104 | 5.59 × 104 | 2.09 × 104 | 5.73 × 104 | 4.41 × 102 | 1.11 × 104 | 1.21 × 104 | 3.00 × 102 |
STD | 9.58 × 103 | 6.34 × 103 | 7.92 × 103 | 9.58 × 103 | 3.21 × 102 | 3.58 × 103 | 4.30 × 103 | 1.76 × 10−3 | |
F5 | AVG | 7.69 × 102 | 7.69 × 102 | 6.89 × 102 | 7.13 × 102 | 6.93 × 102 | 5.92 × 102 | 6.36 × 102 | 5.80 × 102 |
STD | 4.09 × 101 | 3.55 × 101 | 4.28 × 101 | 4.57 × 101 | 4.37 × 101 | 2.00 × 101 | 3.16 × 101 | 2.47 × 101 | |
F7 | AVG | 1.16 × 103 | 1.20 × 103 | 1.00 × 103 | 1.09 × 103 | 1.09 × 103 | 8.70 × 102 | 9.29 × 102 | 8.48 × 102 |
STD | 1.01 × 102 | 5.83 × 101 | 8.38 × 101 | 7.82 × 101 | 6.86 × 101 | 3.81 × 101 | 5.15 × 101 | 3.70 × 101 | |
F8 | AVG | 1.01 × 103 | 1.01 × 103 | 9.60 × 102 | 9.91 × 102 | 9.52 × 102 | 8.77 × 102 | 9.11 × 102 | 8.69 × 102 |
STD | 3.53 × 101 | 3.66 × 101 | 3.28 × 101 | 3.09 × 101 | 3.08 × 101 | 2.14 × 101 | 2.91 × 101 | 1.96 × 101 |
Paramete | Value |
---|---|
Effective area of hydraulic cylinder piston A/m2 | 5.6352 × 10−3 |
Effective stroke of hydraulic cylinder piston x/m | 0.8 |
Hydraulic cylinder internal leakage coefficient La/() | 2.25 × 10−12 |
Modulus of elasticity of the fluid Ey/() | 6.86 × 108 |
Hydraulic cylinder effective volume Va/m3 | 4.5 × 10−3 |
Hydraulic cylinder viscous friction coefficient Bc/() | 1000 |
Hydraulic cylinder and its load mass M/kg | 200 |
Displacement of piston pump Dp/() | 2.387 × 10−6 |
Motor viscous friction coefficient Bm/() | 6 × 10−4 |
Phase resistance R/Ω | 0.0485 |
Phase inductance L/mH | 0.395 |
Motor moment of inertia J/() | 0.0027 |
Magnetic chain Ψf/Wb | 0.1194 |
Elastic load factor Kt/() | 108 |
Bus voltage VDC/V | 750 |
Comparison | Time Rising (tr/s) | Time Setting (ts/s) | Error Steady-State (ess/mm) | Overshoot (os/%) |
---|---|---|---|---|
SSA | 0.55 | 0.58 | 0.18 | 1.18 |
PSO | 0.55 | 0.58 | 0.15 | 0.82 |
GWO | 0.55 | 0.58 | 0.15 | 0.42 |
EDSCSO | 0.55 | 0.58 | 0.15 | 0.32 |
Pre-Optimization | 0.63 | 0.75 | 0.82 | 0.72 |
PID | 0.96 | 1.19 | 1.3 | 1.6 |
Comparison | Maximum Deviation (xe/mm) | Recovery Time (s) |
---|---|---|
SSA | 2.09 | 1.58 |
PSO | 2.11 | 1.62 |
GWO | 2.09 | 2.19 |
EDSCSO | 2.09 | 1.5 |
Pre-Optimization | 2.18 | 4.11 |
PID | 2.2 | 6.38 |
Comparison | Running Time (h) | Best Fit Value |
---|---|---|
SSA | 2.02 | 131.7444 |
PSO | 3.05 | 121.7082 |
GWO | 1.59 | 118.3554 |
EDSCSO | 1.41 | 117.7145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Cao, S.; Deng, X.; Chen, J.; Zhang, H. Research on Parameter Tuning of Electro-Hydrostatic Actuator Position Sliding Mode Controller Based on Enhanced Dynamic Sand Cat Search Optimization Algorithm. Energies 2025, 18, 1888. https://doi.org/10.3390/en18081888
Li W, Cao S, Deng X, Chen J, Zhang H. Research on Parameter Tuning of Electro-Hydrostatic Actuator Position Sliding Mode Controller Based on Enhanced Dynamic Sand Cat Search Optimization Algorithm. Energies. 2025; 18(8):1888. https://doi.org/10.3390/en18081888
Chicago/Turabian StyleLi, Weibo, Shuai Cao, Xiaoqing Deng, Junjie Chen, and Hao Zhang. 2025. "Research on Parameter Tuning of Electro-Hydrostatic Actuator Position Sliding Mode Controller Based on Enhanced Dynamic Sand Cat Search Optimization Algorithm" Energies 18, no. 8: 1888. https://doi.org/10.3390/en18081888
APA StyleLi, W., Cao, S., Deng, X., Chen, J., & Zhang, H. (2025). Research on Parameter Tuning of Electro-Hydrostatic Actuator Position Sliding Mode Controller Based on Enhanced Dynamic Sand Cat Search Optimization Algorithm. Energies, 18(8), 1888. https://doi.org/10.3390/en18081888