High-Quality Heat Flow Determination from Coastal Areas of Fujian Province, China
Abstract
1. Introduction
2. Geological Setting
3. Heat Flow Determination
3.1. Borehole Temperature
3.1.1. Temperature Logging
3.1.2. Temperature Gradient
3.2. Thermal Conductivity Measurement
3.2.1. Measured Thermal Conductivity
3.2.2. Corrected Thermal Conductivity
3.3. Heat Flow Determination
4. Discussion
4.1. Determination of High-Quality Heat Flow Values
4.2. Analysis of the Causes of Geothermal Anomalies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, G.; Wang, Y.; Hu, J.; Zhang, C.; Wang, Y.; Zuo, Y.; Tang, X.; Ma, F.; Hu, S. Direction of exploration and preferred target areas for medium-high temperature geothermal resources in China. Sci. Technol. Rev. 2022, 40, 76–82. [Google Scholar]
- Li, D.; Zeng, L. The study of geothermal distribution in Zhangzhou geothermal area and a preliminary model of its geothermal formation. Earth Sci. 1988, 3, 229–239. [Google Scholar]
- Pham, V.-N.; Boyer, D.; Yuan, X.C.; Liu, S.C. Application of telluric-telluric profiling combined with magnetotelluric and self-potential methods to geothermal exploration in the Fujian Province, China. J. Volcanol. Geotherm. Res. 1995, 65, 227–236. [Google Scholar] [CrossRef]
- Zhuang, Q. Discussion on thermogenetic model of Zhangzhou geothermal field. Earth Sci. 1988, 3, 335–339. [Google Scholar]
- Wu, S.; Yu, Z.; Kang, J.; Zhang, Y.; Gao, P. Research on the anisotropy of thermal conductivity of rocks in Songliao basin, China. Renew. Energy 2021, 179, 593–603. [Google Scholar]
- Duggal, R.; Rayudu, R.; Hinkley, J.; Burnell, J.; Wieland, C.; Keim, M. A comprehensive review of energy extraction from low-temperature geothermal resources in hydrocarbon fields. Renew. Sustain. Energy Rev. 2022, 154, 111865. [Google Scholar]
- Zhang, J.; Wang, B.; Tang, X.; Dong, M. Temperature structure and dynamic background of crust and mantle beneath the high heat flow area of the South China continental margin. Chin. J. Geophys. 2018, 61, 3917–3932. [Google Scholar]
- Zhao, P.; Wang, J.; Wang, J.; Luo, D. Characteristics of Heat Production Distribution in SE China. Acta Petrol. Sin. 1995, 11, 292–305. [Google Scholar]
- Jaupart, C.; Mareschal, J.-C. Radiogenic heat production in the continental crust. In Encyclopedia of Solid Earth Geophysics; Springer International Publishing: Cham, Switzerland, 2021; pp. 1298–1303. [Google Scholar]
- Zhang, Z.; Wang, X.; Xiong, Y.; Peng, G.; Wang, G.; Lu, J.; Zhong, L.; Wang, J.; Yan, Z.; Wei, R. Study on borehole temperature distribution when the well-kick and the well-leakage occurs simultaneously during geothermal well drilling. Geothermics 2022, 104, 102441. [Google Scholar]
- Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Gutiérrez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A. Environment, Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2021, 2, 324–339. [Google Scholar]
- Ho, C.S. A synthesis of the geologic evolution of Taiwan. Tectonophysics 1986, 125, 1–16. [Google Scholar] [CrossRef]
- Wan, T.; Chu, M. Fujian Taiwan shovel shaped active fault. Earth Sci. 1987, 12, 21–29. [Google Scholar]
- Liao, Z. Deep-Circulation Hydrothermal Systems Without Magmatic Heat Source in Fujian Province. Geoscience 2012, 26, 85–98. [Google Scholar]
- Gan, H.; Lin, W.; Yue, G.; Wang, X.; Ma, F.; Wang, G. Research on the fault controlling mechanism of geothermal water in Zhangzhou Basin. J. Groundw. Sci. Eng. 2017, 5, 326–335. [Google Scholar]
- Li, X. Cretaceous magmatism and lithospheric extension in Southeast China. J. Asian Earth Sci. 2000, 18, 293–305. [Google Scholar]
- Wang, D.; Shu, L. Late Mesozoic basin and range tectonics and related magmatism in Southeast China. Geosci. Front. 2012, 3, 109–124. [Google Scholar]
- Wang, Y.; Wang, Y.; Jiang, G.; Hu, J.; Shi, Y.; Wang, S.; Hu, S. A Method for Determining Target Areas of Hot Dry Rock Resources: A Case Study in Continental China. Energies 2024, 17, 2435. [Google Scholar] [CrossRef]
- Morgan, P.; Gosnold, W.D. Heat flow and thermal regimes in the continental United States. Mem. Geol. Soc. Am. 1989, 172, 493–522. [Google Scholar]
- Blackwell, D.D.; Steele, J.L. Thermal conductivity of sedimentary rocks: Measurement and significance. In Thermal History of Sedimentary Basins: Methods and Case Histories; Springer: New York, NY, USA, 1989; pp. 13–36. [Google Scholar]
- Sass, J.; Lachenbruch, A.H.; Munroe, R.J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J. Geophys. Res. 1971, 76, 3391–3401. [Google Scholar]
- Bullard, E.C. Electromagnetic induction in a rotating sphere. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1949, 199, 413–443. [Google Scholar]
- Wang, Y.; Wang, L.; Hu, D.; Guan, J.; Bai, Y.; Wang, Z.; Jiang, G.; Hu, J.; Tang, B.; Zhu, C. The present-day geothermal regime of the North Jiangsu Basin, East China. Geothermics 2020, 88, 101829. [Google Scholar]
- Haenel, R.; Rybach, L.; Stegena, L. Fundamentals of geothermics. In Handbook of Terrestrial Heat-Flow Density Determination: With Guidelines and Recommendations of the International Heat-Flow Commission; Springer: Dordrecht, The Netherlands, 1988; pp. 9–57. [Google Scholar]
- Powell, R.; Holland, T.J.B. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 1988, 6, 173–204. [Google Scholar]
- Popov, N.A. Kinetics of plasma-assisted combustion: Effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures. Plasma Sources Sci. Technol. 2016, 25, 043002. [Google Scholar]
- Furlong, K.P.; Chapman, D.S. Thermal state of the continental lower crust. Geotectonics 1992, 23, 179–199. [Google Scholar]
- Sass, B.H. A numerical model for prediction of road temperature and ice. J. Appl. Meteorol. Climatol. 1992, 31, 1499–1506. [Google Scholar]
- Vosteen, H.D.; Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth Parts A/B/C 2003, 28, 499–509. [Google Scholar]
- Rhee, S.K. Porosity–thermal conductivity correlations for ceramic materials. Mater. Sci. Eng. 1975, 20, 89–93. [Google Scholar]
- Gan, H.; Wang, G.; Wang, X.; Lin, W.; Yue, G.J.G. Research on the hydrochemistry and fault control mechanism of geothermal water in northwestern Zhangzhou basin. Geofluids 2019, 2019, 3925462. [Google Scholar]
- Furlong, K.P.; Chapman, D.S. Heat flow, heat generation, and the thermal state of the lithosphere. Annu. Rev. Earth Planet. Sci. 2013, 41, 385–410. [Google Scholar]
- Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophys. Geosystems 2019, 20, 4001–4024. [Google Scholar]
- Han, Q.Z.; Zhuang, Q.X. On the source and pathway of hot water in Zhangzhou Basin, Fujian. Earth Sci.-J. China Univ. Geosci. 1988, 13, 271–277. [Google Scholar]
- Lin, W.; Wang, F.; Gan, H.; Ma, F.; Wang, G. Site selection and development prospect of a hot dry rock resource project in Zhangzhou geothermal field, Fujian province. Sci. Technol. Rev. 2015, 33, 28–34. [Google Scholar]
- Zhang, J.; Fang, G.; He, Y.B. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China. Earth Sci. Front. 2023, 30, 316. [Google Scholar]
- Nian, W.Z. Formation model of geothermal field and its relation with control structure in Zhangzhou. Saf. Environ. Eng. 2008, 15, 30–33. [Google Scholar]
- Xiong, S.; Jing, D.; Sun, K.; Zou, Y.; Fan, X.; Du, X. Some characteristics of deep structure of the Zhangzhou geothermal field and it’s neighbourhood in the Fijian province. Chin. J. Geophys. 1991, 34, 55–63. [Google Scholar]
Well | Longitude (°N) | Latitude (°E) | Depth (m) | Test Depth (m) | Water Surface Depth (m) | Stabilization Period (Months) |
---|---|---|---|---|---|---|
ZK02 | 118.0313759 | 24.39676251 | 858.00 | 620.00 | 10.50 | 36 |
HDR1 | 117.7381504 | 24.3719023 | 2980.00 | 2975.00 | 65.00 | 57 |
LJSZ | 118.0487962 | 24.23562462 | 1870.00 | 1830.00 | 22.00 | 86 |
JM-1 | 118.0783775 | 24.60604684 | 2000.00 | 2000.00 | 10.00 | 30 |
DS | 117.4820691 | 23.73851644 | 800.00 | 710.00 | 1.00 | 51 |
ZA | 117.1395296 | 23.7589869 | 1080.00 | 1020.00 | 0.80 | 34 |
Well | Longitude (°N) | Latitude (°E) | Calculation Range (m) | Geothermal Gradient (°C/km) |
---|---|---|---|---|
ZK02 | 118.0313759 | 24.39676251 | 25.50–620.00 | 11.32 |
HDR1 | 117.7381504 | 24.3719023 | 80.00–2975.00 | 20.92 |
LJSZ | 118.0487962 | 24.23562462 | 100.00–1830.00 | 20.33 |
JM-1 | 118.0783775 | 24.60604684 | 100.00–2000.00 | 21.87 |
DS | 117.4820691 | 23.73851644 | 120.00–710.00 | 20.13 |
ZA | 117.1395296 | 23.7589869 | 13.50–1020.00 | 29.20 |
Number | Well | Depth (m) | Measured Thermal Conductivity W/(m·K) | Corrected Thermal Conductivity W/(m·K) |
---|---|---|---|---|
01 | ZK02 | 40 | 3.33 | 3.62 |
02 | ZK02 | 50 | 3.152 | 3.41 |
03 | ZK02 | 60 | 3.673 | 4.04 |
04 | ZK02 | 73 | 3.273 | 3.56 |
05 | ZK02 | 80 | 3.466 | 3.79 |
06 | ZK02 | 90 | 3.229 | 3.51 |
07 | ZK02 | 100 | 3.228 | 3.51 |
08 | ZK02 | 110 | 3.496 | 3.83 |
09 | ZK02 | 120 | 3.806 | 4.21 |
10 | ZK02 | 130 | 3.524 | 3.87 |
11 | ZK02 | 140 | 3.468 | 3.80 |
12 | ZK02 | 150 | 3.784 | 4.19 |
13 | ZK02 | 160 | 3.191 | 3.47 |
14 | ZK02 | 170 | 3.656 | 4.03 |
15 | ZK02 | 180 | 3.581 | 3.94 |
16 | ZK02 | 190 | 3.429 | 3.76 |
17 | ZK02 | 200 | 3.483 | 3.82 |
18 | ZK02 | 210 | 3.332 | 3.64 |
19 | ZK02 | 220 | 3.732 | 4.13 |
20 | ZK02 | 230 | 3.504 | 3.85 |
21 | ZK02 | 240 | 3.924 | 4.36 |
22 | ZK02 | 250 | 3.922 | 4.36 |
23 | ZK02 | 260 | 3.774 | 4.18 |
24 | ZK02 | 283 | 3.956 | 4.40 |
25 | ZK02 | 296 | 3.195 | 3.48 |
26 | ZK02 | 350 | 3.331 | 3.65 |
27 | ZK02 | 400 | 3.552 | 3.92 |
28 | ZK02 | 450 | 3.61 | 3.99 |
29 | ZK02 | 500 | 3.123 | 3.40 |
30 | ZK02 | 550 | 3.004 | 3.26 |
31 | ZK02 | 600 | 3.451 | 3.81 |
32 | ZK02 | 650 | 3.291 | 3.60 |
33 | ZK02 | 700 | 3.216 | 3.52 |
34 | ZK02 | 750 | 3.457 | 3.79 |
35 | ZK02 | 800 | 3.582 | 3.94 |
36 | ZK02 | 850 | 3.096 | 3.38 |
37 | ZK02 | 858.23 | 3.125 | 3.41 |
38 | DS | 15 | 3.233 | 3.51 |
39 | DS | 30 | 3.28 | 3.56 |
40 | DS | 50 | 2.972 | 3.19 |
41 | DS | 73 | 2.746 | 2.93 |
42 | DS | 99 | 3.413 | 3.73 |
43 | DS | 120 | 2.767 | 2.95 |
44 | DS | 145 | 3.322 | 3.62 |
45 | DS | 170 | 3.074 | 3.33 |
46 | DS | 200 | 3.206 | 3.49 |
47 | DS | 224 | 2.884 | 3.10 |
48 | DS | 255 | 2.994 | 3.24 |
49 | DS | 280 | 2.784 | 2.98 |
50 | DS | 315 | 2.792 | 2.99 |
51 | DS | 340 | 2.796 | 3.00 |
52 | DS | 375 | 2.478 | 2.61 |
53 | DS | 410 | 4.195 | 4.72 |
54 | DS | 436 | 3.68 | 4.09 |
55 | DS | 455 | 3.535 | 3.92 |
56 | DS | 480 | 2.567 | 2.73 |
57 | DS | 504 | 3.586 | 3.99 |
58 | DS | 530 | 2.648 | 2.83 |
59 | DS | 562 | 2.618 | 2.79 |
60 | DS | 595 | 3.172 | 3.48 |
61 | DS | 620 | 3.09 | 3.38 |
62 | DS | 650 | 2.671 | 2.87 |
63 | DS | 680 | 2.939 | 3.20 |
64 | DS | 710 | 2.544 | 2.71 |
65 | ZA | 350 | 3.501 | 3.92 |
66 | ZA | 550 | 2.976 | 3.28 |
67 | ZA | 600 | 2.988 | 3.30 |
68 | ZA | 650 | 2.937 | 3.24 |
69 | ZA | 700 | 3.026 | 3.36 |
70 | ZA | 750 | 3.501 | 3.98 |
71 | ZA | 795 | 2.586 | 2.79 |
72 | ZA | 850 | 2.978 | 3.31 |
73 | ZA | 900 | 2.683 | 2.93 |
74 | ZA | 950 | 2.617 | 2.84 |
75 | ZA | 1000 | 3.1 | 3.48 |
76 | ZA | 1050 | 3.326 | 3.65 |
77 | ZA | 1100 | 2.979 | 3.25 |
78 | ZA | 1150 | 3.484 | 3.83 |
Well | Calculation Range (m) | Lithology | Geothermal Gradient (°C/km) | Average Thermal Conductivity (W m−1 K−1) | Heat Flow (mW m−2) |
---|---|---|---|---|---|
ZK02 | 25.50–620.00 | Granite | 11.32 | 3.80 | 43.0 |
HDR1 | 80.00–2975.00 | Granite | 20.92 | 3.00 | 62.8 |
LJSZ | 100.00–1830.00 | Granite | 20.33 | 3.18 | 64.6 |
JM-1 | 100.00–2000.00 | Granite | 21.87 | 3.13 | 68.5 |
DS | 120.00–710.00 | Granite | 20.13 | 3.29 | 66.2 |
ZA | 13.50–1020.00 | Granite | 29.2 | 3.41 | 99.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Jiang, G.; Hu, J.; Hu, S. High-Quality Heat Flow Determination from Coastal Areas of Fujian Province, China. Energies 2025, 18, 1735. https://doi.org/10.3390/en18071735
Wang Y, Wang Y, Jiang G, Hu J, Hu S. High-Quality Heat Flow Determination from Coastal Areas of Fujian Province, China. Energies. 2025; 18(7):1735. https://doi.org/10.3390/en18071735
Chicago/Turabian StyleWang, Yaqi, Yibo Wang, Guangzheng Jiang, Jie Hu, and Shengbiao Hu. 2025. "High-Quality Heat Flow Determination from Coastal Areas of Fujian Province, China" Energies 18, no. 7: 1735. https://doi.org/10.3390/en18071735
APA StyleWang, Y., Wang, Y., Jiang, G., Hu, J., & Hu, S. (2025). High-Quality Heat Flow Determination from Coastal Areas of Fujian Province, China. Energies, 18(7), 1735. https://doi.org/10.3390/en18071735