Exergy-Based Aerothermodynamic Evaluation of a Turbocharger Turbine Under Pulsating Flow: An Experimental Power-Based Approach
Abstract
:1. Introduction
Problem Statement and Solution Approach
2. Materials and Methods
2.1. Experimental Setup
2.2. Adiabatic and Diabatic (i.e., Non-Adiabatic) Measurement Conditions
2.3. Turbine Heat Transfer Estimation Using Power-Based Approach
2.4. Flow Exergy Methodology
- 1
- law of thermodynamics (energy balance):
- 2
- law of thermodynamics (entropy balance):
- Exergy at the turbine inlet () represents the available maximum useful work in the fluid flow before expansion and defined as:
- Exergy at the turbine Outlet () represents the remained available maximum useful work in the fluid flow after expansion and defined as:
- Turbine power () is the mechanical power produced by the turbine, representing the useful work generated during its operation.
- Exergy due to heat transfer () encompasses the exergy associated with heat transfer across system boundaries. It is expressed as:
- Exergy Destruction () represents the losses associated with irreversible within the system, quantifying inefficiencies due to factors such as friction, turbulence, and non-ideal gas behavior. It is defined as:
- Product exergy rate (): the useful work produced by a system;
- Exergy destruction rate (): exergy destroyed due to internal irreversibilities;
- Exergy loss rate (): exergy lost due to heat losses.
3. Results and Discussion
3.1. Turbine Heat Transfer Estimation Under Steady Flow
3.2. Turbine Heat Transfer Estimation Under Pulsating Flow
3.3. Exergy-Based Analysis of the Turbine
3.4. Impact Exergy-Based Aerothermodynamic Analysis on Engine Development Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
CHT | Conjugate Heat Transfer |
ICE | Internal Combustion Engine |
ICP | Isentropic Compressor Power |
rpm | Rotation per Minute |
TIT | Turbine Inlet Temperature |
Notations | |
T | Temperature |
P | Power |
Heat transfer rate | |
Mass Flow Rate | |
Heat capacity at constant pressure | |
η | Efficiency |
Pressure ratio | |
Exergy rate | |
Enthalpy rate | |
Entropy rate | |
p | Pressure |
Subscripts | |
0 | Ambiance |
1 | Compressor inlet |
2 | Compressor outlet |
3 | Turbine inlet |
4 | Turbine outlet |
C | Compressor |
D | Destruction |
F | Fuel |
L | Loss |
P | Product |
T | Turbine |
b | Boundary |
eff | Effective |
ex | Exergetic |
is | Isentropic |
corr | Corrected |
uncorr | Uncorrected |
References
- Sterlepper, S.; Fischer, M.; Claßen, J.; Huth, V.; Pischinger, S. Concepts for Hydrogen Internal Combustion Engines and Their Implications on the Exhaust Gas Aftertreatment System. Energies 2021, 14, 8166. [Google Scholar] [CrossRef]
- Onorati, A.; Payri, R.; Vaglieco, B.M.; Agarwal, A.K.; Bae, C.; Bruneaux, G.; Canakci, M.; Gavaises, M.; Günthner, M.; Hasse, C. The Role of Hydrogen for Future Internal Combustion Engines. Int. J. Engine Res. 2022, 23, 529–540. [Google Scholar]
- Kazemi Bakhshmand, S.; Luu, L.T.; Biet, C. Experimental Energy and Exergy Analysis of an Automotive Turbocharger Using a Novel Power-Based Approach. Energies 2021, 14, 6572. [Google Scholar] [CrossRef]
- Marelli, S.; Gandolfi, S.; Capobianco, M. Heat Transfer Effect on Performance Map of a Turbocharger Turbine for Automotive Application; SAE Technical Paper; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- Marelli, S.; Marmorato, G.; Capobianco, M.; Rinaldi, A. Heat Transfer Effects on Performance Map of a Turbocharger Compressor for Automotive Application; SAE Technical Paper; SAE: Warrendale, PA, USA, 2015. [Google Scholar]
- Gao, X. Model of Aerodynamics and Heat Transfer of a Turbocharger; Technische Universitaet: Berlin, Germany, 2019; ISBN 1392803675. [Google Scholar]
- Gao, X.; Savic, B.; Baar, R. Conjugate Heat Transfer Simulation of a Turbocharger Radial Turbine for Gasoline Engines. In Proceedings of the 36th CADFEM ANSYS Simulation Conference, Leipzig, Germany, 10–12 October 2018; pp. 10–12. [Google Scholar]
- Aghaali, H.; Ångström, H.-E.; Serrano, J.R. Evaluation of Different Heat Transfer Conditions on an Automotive Turbocharger. Int. J. Engine Res. 2015, 16, 137–151. [Google Scholar] [CrossRef]
- Payri, F.; Olmeda, P.; Arnau, F.J.; Dombrovsky, A.; Smith, L. External Heat Losses in Small Turbochargers: Model and Experiments. Energy 2014, 71, 534–546. [Google Scholar] [CrossRef]
- Baar, R.; Savic, B.; Zimmermann, R. Ein Neues Verfahren Zur Bedatung von Aerodynamischen, Thermischen Und Mechanischen Turboladermodellen. In Der Verbrennungsmotor-ein Antrieb mit Vergangenheit und Zukunft: Beiträge zu Methoden, Verfahren und Technischen Lösungen Festschrift für Professor Hans Zellbeck; Springer Vieweg: Wiesbaden, Germany, 2018; pp. 37–59. [Google Scholar]
- Savic, B.; Gao, X.; Baar, R. Turbocharger Heat Transfer Determination with a Power-Based Phenomenological Approach and a Conjugate Heat Transfer Validation. J. Turbomach. 2019, 141, 021011. [Google Scholar] [CrossRef]
- Gao, X.; Savic, B.; Baar, R. A Numerical Procedure to Model Heat Transfer in Radial Turbines for Automotive Engines. Appl. Therm. Eng. 2019, 153, 678–691. [Google Scholar] [CrossRef]
- Zimmermann, R.; Baar, R.; Biet, C. Determination of the Isentropic Turbine Efficiency Due to Adiabatic Measurements and the Validation of the Conditions via a New Criterion. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2018, 232, 4485–4494. [Google Scholar]
- Diango, A.; Perilhon, C.; Descombes, G.; Danho, E. Application of Exergy Balances for the Optimization of Non-Adiabatic Small Turbomachines Operation. Energy 2011, 36, 2924–2936. [Google Scholar] [CrossRef]
- Brötz, J.; Schänzle, C.; Pelz, P.F. Exergy-Based Efficiency Assessment of Fans vs. Isentropic Efficiency. Int. J. Turbomach. Propuls. Power 2023, 8, 4. [Google Scholar] [CrossRef]
- Lim, S.M.; Bakhshmand, S.K.; Biet, C.; Mihaescu, M. Experimental and Numerical Investigation of a Turbocharger Turbine Using Exergy Analysis at Non-Adiabatic Conditions; SAE Technical Paper; SAE: Warrendale, PA, USA, 2020. [Google Scholar]
- Lim, S.M.; Dahlkild, A.; Mihaescu, M. Aerothermodynamics and Exergy Analysis in Radial Turbine with Heat Transfer. J. Turbomach. 2018, 140, 091007. [Google Scholar] [CrossRef]
- Lim, S.M.; Dahlkild, A.; Mihaescu, M. Exergy Analysis on Turbocharger Radial Turbine with Heat Transfer. In Proceedings of the 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Stockholm, Sweden, 3–7 April 2017; European Turbomachinery Society, 2017. [Google Scholar]
- Rezk, A.; Sharma, S.; Barrans, S.; Hossain, A.K.; Lee, S.P.; Imran, M. Computational Study of a Radial Flow Turbine Operates under Various Pulsating Flow Shapes and Amplitudes. J. Energy Resour. Technol. 2021, 143, 120904. [Google Scholar] [CrossRef]
- Mosca, R.; Mihaescu, M. Assessment of the Unsteady Performance of a Turbocharger Radial Turbine under Pulsating Flow Conditions: Parametric Study and Modeling. Energy Convers. Manag. X 2022, 15, 100268. [Google Scholar] [CrossRef]
- Mosca, R.; Lim, S.M.; Mihaescu, M. Influence of Pulse Characteristics on Turbocharger Radial Turbine. J. Eng. Gas. Turbine Power 2022, 144, 021018. [Google Scholar]
- Mosca, R.; Maw Lim, S.; Mihaescu, M. Turbocharger Radial Turbine Response to Pulse Amplitude. J. Energy Resour. Technol. 2022, 144, 082111. [Google Scholar] [CrossRef]
- Mosca, R.; Laudato, M.; Mihaescu, M. Modeling Radial Turbine Performance under Pulsating Flow by Machine Learning Method. Energy Convers. Manag. X 2022, 16, 100300. [Google Scholar] [CrossRef]
- Marinoni, A.M.; Onorati, A.; Montenegro, G.; Sforza, L.; Cerri, T.; Olmeda, P.; Dreif, A. RDE Cycle Simulation by 0D/1D Models to Investigate IC Engine Performance and Cylinder-out Emissions. Int. J. Engine Res. 2022, 24, 3085–3104. [Google Scholar] [CrossRef]
- Marinoni, A.M.; Onorati, A.; Manca Di Villahermosa, G.; Langridge, S. Real Driving Cycle Simulation of a Hybrid Bus by Means of a Co-Simulation Tool for the Prediction of Performance and Emissions. Energies 2023, 16, 4736. [Google Scholar] [CrossRef]
- Misul, D.A.; Scopelliti, A.; Baratta, M. High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling. Energies 2024, 17, 1593. [Google Scholar] [CrossRef]
- Baar, R.; Biet, C.; Boxberger, V.; Mai, H.; Zimmermann, R. New Evaluation of Turbocharger Components Based on Turbine Outlet Temperature Measurements in Adiabatic Conditions. In Proceedings of the 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-15), Honolulu, HI, USA, 24–28 February 2014; pp. 24–28. [Google Scholar]
- Savic, B.; Zimmermann, R.; Jander, B.; Baar, R. New Phenomenological and Power-Based Approach for Determining the Heat Flows of a Turbocharger Directly from Hot Gas Test Data. In Proceedings of the 12 th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Stockholm, Sweden, 3–7 April 2017; European Turbomachinery Society, 2017. [Google Scholar]
- Bojan Savic Experimentelle Und Simulative Analyse von Wärmeströmen Am Turbolader Mit Dem Leistungsbasierten Ansatz. In Spannungsfeld Fahrzeugantriebe—Gedenkschrift für Prof. Dr.-Ing. Roland Baar; Universitätsverlag der TU Berlin: Berlin, Germany, 2020; pp. 555–572.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi Bakhshmand, S.; Biet, C. Exergy-Based Aerothermodynamic Evaluation of a Turbocharger Turbine Under Pulsating Flow: An Experimental Power-Based Approach. Energies 2025, 18, 1714. https://doi.org/10.3390/en18071714
Kazemi Bakhshmand S, Biet C. Exergy-Based Aerothermodynamic Evaluation of a Turbocharger Turbine Under Pulsating Flow: An Experimental Power-Based Approach. Energies. 2025; 18(7):1714. https://doi.org/10.3390/en18071714
Chicago/Turabian StyleKazemi Bakhshmand, Sina, and Clemens Biet. 2025. "Exergy-Based Aerothermodynamic Evaluation of a Turbocharger Turbine Under Pulsating Flow: An Experimental Power-Based Approach" Energies 18, no. 7: 1714. https://doi.org/10.3390/en18071714
APA StyleKazemi Bakhshmand, S., & Biet, C. (2025). Exergy-Based Aerothermodynamic Evaluation of a Turbocharger Turbine Under Pulsating Flow: An Experimental Power-Based Approach. Energies, 18(7), 1714. https://doi.org/10.3390/en18071714