The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning
Abstract
:1. Introduction
2. Current State of the Art of Smart Microgrid Technologies
3. The Role of Smart Microgrids in Urban Energy Infrastructure
3.1. Smart Microgrid Integration in Urban Energy Systems
3.2. Enhancing Urban Resilience Through Microgrids
4. Sustainable Energy Planning and Microgrid Technologies
4.1. Advanced AI-Driven Predictive Analytics for Long-Term Energy Planning
4.2. Hybrid Energy Storage Systems for Sustained Efficiency
4.3. Advanced Grid Management Through AI and Blockchain Integration
4.4. Intelligent Integration of Renewable Energy Sources for Long-Term Sustainability
5. Smart Microgrids, Resilience, and Disaster Recovery in Urban Settings
5.1. Adaptive Microgrid Architecture for Enhanced Resilience
5.2. AI-Powered Disaster Prediction and Response Systems for Urban Microgrids
5.3. Advanced Materials for Durable and Resilient Energy Infrastructure
5.4. Integrated Community Microgrid Networks for Disaster Recovery
6. Policy and Economic Considerations for Smart Microgrids in Urban Areas
7. Challenges, Future Trends, and Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohlhase, J.E. The New Urban World 2050: Perspectives, Prospects and Problems. Reg. Sci. Policy Pract. 2013, 5, 153–166. [Google Scholar] [CrossRef]
- Akash, F.A.; Shovon, S.M.; Rahman, W.; Rahman, M.A.; Chakraborty, P.; Monir, M.U. Greening the Grid: A Comprehensive Review of Renewable Energy in Bangladesh. Heliyon 2024, 10, e27477. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, S.; Abbasi, M.A.; Ali, H.; Iqbal, M.; Munir, R.; Kilic, H. Possibilities, Challenges, and Future Opportunities of Microgrids: A Review. Sustainability 2023, 15, 6366. [Google Scholar] [CrossRef]
- Zhang, J. Energy Management System: The Engine for Sustainable Development and Resource Optimization. Highlights Sci. Eng. Technol. 2023, 76, 618–624. [Google Scholar] [CrossRef]
- Amine, H.M.; Aissa, B.; Rezk, H.; Messaoud, H.; Othmane, A.; Saad, M.; Abdelkareem, M.A. Enhancing Hybrid Energy Storage Systems with Advanced Low-Pass Filtration and Frequency Decoupling for Optimal Power Allocation and Reliability of Cluster of DC-Microgrids. Energy 2023, 282, 128310. [Google Scholar] [CrossRef]
- Almihat, M.G.M.; Munda, J.L. Review on Recent Control System Strategies in Microgrid. Edelweiss Appl. Sci. Technol. 2024, 8, 5089–5111. [Google Scholar] [CrossRef]
- Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. A Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives. World Electr. Veh. J. 2024, 15, 364. [Google Scholar] [CrossRef]
- Al Shareef, A.M.; Seçkiner, S.; Eid, B.; Abumeteir, H. Integration of Blockchain with Artificial Intelligence Technologies in the Energy Sector: A Systematic Review. Front. Energy Res. 2024, 12, 1377950. [Google Scholar] [CrossRef]
- Aguilar, J.; Garces-Jimenez, A.; R-Moreno, M.D.; García, R. A Systematic Literature Review on the Use of Artificial Intelligence in Energy Self-Management in Smart Buildings. Renew. Sustain. Energy Rev. 2021, 151, 111530. [Google Scholar] [CrossRef]
- Manuel, H.N.N.; Kehinde, H.M.; Agupugo, C.P.; Manuel, A.C.N. The Impact of AI on Boosting Renewable Energy Utilization and Visual Power Plant Efficiency in Contemporary Construction. World J. Adv. Res. Rev. 2024, 23, 1333–1348. [Google Scholar] [CrossRef]
- Liang, X.; Chen, K.; Chen, S.; Zhu, X.; Jin, X.; Du, Z. IoT-Based Intelligent Energy Management System for Optimal Planning of HVAC Devices in Net-Zero Emissions PV-Battery Building Considering Demand Compliance. Energy Convers. Manag. 2023, 292, 117369. [Google Scholar] [CrossRef]
- Dawn, S.; Ramakrishna, A.; Ramesh, M.; Das, S.S.; Rao, K.D.; Islam, M.M.; Selim Ustun, T. Integration of Renewable Energy in Microgrids and Smart Grids in Deregulated Power Systems: A Comparative Exploration. Adv. Energy Sustain. Res. 2024, 5, 2400088. [Google Scholar] [CrossRef]
- Esfandi, S.; Tayebi, S.; Byrne, J.; Taminiau, J.; Giyahchi, G.; Alavi, S.A. Smart Cities and Urban Energy Planning: An Advanced Review of Promises and Challenges. Smart Cities 2024, 7, 414–444. [Google Scholar] [CrossRef]
- Bompard, E.F.; Conti, S.; Masera, M.J.; Soma, G.G. A New Electricity Infrastructure for Fostering Urban Sustainability: Challenges and Emerging Trends. Energies 2024, 17, 5573. [Google Scholar] [CrossRef]
- Koohi-Kamali, S.; Rahim, N.A. Coordinated Control of Smart Microgrid during and after Islanding Operation to Prevent under Frequency Load Shedding Using Energy Storage System. Energy Convers. Manag. 2016, 127, 623–646. [Google Scholar] [CrossRef]
- Hotaling, C.; Bird, S.; Heintzelman, M.D. Willingness to Pay for Microgrids to Enhance Community Resilience. Energy Policy 2021, 154, 112248. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.-C.; Madyira, D.M. Optimizing Renewable Energy Systems through Artificial Intelligence: Review and Future Prospects. Energy Environ. 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Xing, C.; Liu, J.; He, Y.; Zhou, Y.; Zhang, G. Artificial Intelligence Powered Large-Scale Renewable Integrations in Multi-Energy Systems for Carbon Neutrality Transition: Challenges and Future Perspectives. Energy AI 2022, 10, 100195. [Google Scholar] [CrossRef]
- Hao, H.; Wang, Y.; Chen, J. Empowering Scenario Planning with Artificial Intelligence: A Perspective on Building Smart and Resilient Cities. Engineering 2024, 43, 272–283. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Olawumi, M.A.; Omigbodun, F.T. Machine Learning for Optimising Renewable Energy and Grid Efficiency. Atmosphere 2024, 15, 1250. [Google Scholar] [CrossRef]
- Ukoba, K.; Onisuru, O.R.; Jen, T.-C. Harnessing Machine Learning for Sustainable Futures: Advancements in Renewable Energy and Climate Change Mitigation. Bull. Natl. Res. Cent. 2024, 48, 99. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and Artificial Intelligence: Applications of Industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Akter, A.; Zafir, E.I.; Dana, N.H.; Joysoyal, R.; Sarker, S.K.; Li, L.; Muyeen, S.M.; Das, S.K.; Kamwa, I. A Review on Microgrid Optimization with Meta-Heuristic Techniques: Scopes, Trends and Recommendation. Energy Strategy Rev. 2024, 51, 101298. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.; Shang, Y. A Review of Industrial Big Data for Decision Making in Intelligent Manufacturing. Eng. Sci. Technol. Int. J. 2022, 29, 101021. [Google Scholar] [CrossRef]
- Ullah, I.; Adhikari, D.; Su, X.; Palmieri, F.; Wu, C.; Choi, C. Integration of Data Science with the Intelligent IoT (IIoT): Current Challenges and Future Perspectives. Digit. Commun. Netw. 2024, in press. [Google Scholar] [CrossRef]
- Kaur, R.; Gabrijelčič, D.; Klobučar, T. Artificial Intelligence for Cybersecurity: Literature Review and Future Research Directions. Inf. Fusion 2023, 97, 101804. [Google Scholar] [CrossRef]
- Sarker, M.T.; Haram, M.H.S.M.; Shern, S.J.; Ramasamy, G.; Al Farid, F. Second-Life Electric Vehicle Batteries for Home Photovoltaic Systems: Transforming Energy Storage and Sustainability. Energies 2024, 17, 2345. [Google Scholar] [CrossRef]
- Azizighalehsari, S.; Venugopal, P.; Pratap Singh, D.; Batista Soeiro, T.; Rietveld, G. Empowering Electric Vehicles Batteries: A Comprehensive Look at the Application and Challenges of Second-Life Batteries. Batteries 2024, 10, 161. [Google Scholar] [CrossRef]
- Dong, Q.; Liang, S.; Li, J.; Kim, H.C.; Shen, W.; Wallington, T.J. Cost, Energy, and Carbon Footprint Benefits of Second-Life Electric Vehicle Battery Use. iScience 2023, 26, 107195. [Google Scholar] [CrossRef]
- Thakur, J.; Martins Leite de Almeida, C.; Baskar, A.G. Electric Vehicle Batteries for a Circular Economy: Second Life Batteries as Residential Stationary Storage. J. Clean. Prod. 2022, 375, 134066. [Google Scholar] [CrossRef]
- Kebir, N.; Leonard, A.; Downey, M.; Jones, B.; Rabie, K.; Bhagavathy, S.M.; Hirmer, S.A. Second-Life Battery Systems for Affordable Energy Access in Kenyan Primary Schools. Sci. Rep. 2023, 13, 1374. [Google Scholar] [CrossRef] [PubMed]
- Börner, M.F.; Frieges, M.H.; Späth, B.; Spütz, K.; Heimes, H.H.; Sauer, D.U.; Li, W. Challenges of Second-Life Concepts for Retired Electric Vehicle Batteries. Cell Rep. Phys. Sci. 2022, 3, 101095. [Google Scholar] [CrossRef]
- Gu, X.; Bai, H.; Cui, X.; Zhu, J.; Zhuang, W.; Li, Z.; Hu, X.; Song, Z. Challenges and Opportunities for Second-Life Batteries: Key Technologies and Economy. Renew. Sustain. Energy Rev. 2024, 192, 114191. [Google Scholar] [CrossRef]
- El-Afifi, M.I.; Sedhom, B.E.; Padmanaban, S.; Eladl, A.A. A Review of IoT-Enabled Smart Energy Hub Systems: Rising, Applications, Challenges, and Future Prospects. Renew. Energy Focus 2024, 51, 100634. [Google Scholar] [CrossRef]
- Bamisile, O.; Cai, D.; Adun, H.; Dagbasi, M.; Ukwuoma, C.C.; Huang, Q.; Johnson, N.; Bamisile, O. Towards Renewables Development: Review of Optimization Techniques for Energy Storage and Hybrid Renewable Energy Systems. Heliyon 2024, 10, e37482. [Google Scholar] [CrossRef]
- Alijoyo, F.A. AI-Powered Deep Learning for Sustainable Industry 4.0 and Internet of Things: Enhancing Energy Management in Smart Buildings. Alex. Eng. J. 2024, 104, 409–422. [Google Scholar] [CrossRef]
- Alrumaih, T.N.I.; Alenazi, M.J.F.; AlSowaygh, N.A.; Humayed, A.A.; Alablani, I.A. Cyber Resilience in Industrial Networks: A State of the Art, Challenges, and Future Directions. J. King Saud. Univ.—Comput. Inf. Sci. 2023, 35, 101781. [Google Scholar] [CrossRef]
- Nik, V.M.; Perera, A.T.D.; Chen, D. Towards Climate Resilient Urban Energy Systems: A Review. Natl. Sci. Rev. 2020, 8, nwaa134. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and Criteria for Assessing Urban Energy Resilience: A Literature Review. Renew. Sustain. Energy Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Smart Grid Technologies and Application in the Sustainable Energy Transition: A Review. Int. J. Sustain. Energy 2023, 42, 685–758. [Google Scholar] [CrossRef]
- Uddin, M.; Mo, H.; Dong, D.; Elsawah, S.; Zhu, J.; Guerrero, J.M. Microgrids: A Review, Outstanding Issues and Future Trends. Energy Strategy Rev. 2023, 49, 101127. [Google Scholar] [CrossRef]
- Khan, K.A.; Quamar, M.M.; Al-Qahtani, F.H.; Asif, M.; Alqahtani, M.; Khalid, M. Smart Grid Infrastructure and Renewable Energy Deployment: A Conceptual Review of Saudi Arabia. Energy Strategy Rev. 2023, 50, 101247. [Google Scholar] [CrossRef]
- Khaleel, M.; Yusupov, Z.; Alfalh, B.; Guneser, M.T.; Nassar, Y.; El-Khozondar, H. Impact of Smart Grid Technologies on Sustainable Urban Development. Int. J. Electr. Eng. Sustain. 2024, 2, 62–82. [Google Scholar] [CrossRef]
- Gerlach, J.; Eckhoff, S.; Breitner, M.H. Decision Support for Strategic Microgrid Design Integrating Governance, Business, Intelligence, Communication, and Physical Perspectives. Sustain. Cities Soc. 2024, 113, 105672. [Google Scholar] [CrossRef]
- Olujobi, O.J.; Okorie, U.E.; Olarinde, E.S.; Aina-Pelemo, A.D. Legal Responses to Energy Security and Sustainability in Nigeria’s Power Sector amidst Fossil Fuel Disruptions and Low Carbon Energy Transition. Heliyon 2023, 9, e17912. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, Y.; Kim, D. Regional Smart City Development Focus: The South Korean National Strategic Smart City Program. IEEE Access 2021, 9, 7193–7210. [Google Scholar] [CrossRef]
- Reddy, G.P.; Kumar, Y.V.P.; Chakravarthi, M.K. Communication Technologies for Interoperable Smart Microgrids in Urban Energy Community: A Broad Review of the State of the Art, Challenges, and Research Perspectives. Sensors 2022, 22, 5881. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Raman, R.; Singh, A.; Shiva, C.K.; Kumar, R.; Sadhu, P.K.; Collins, E.R.; Senjyu, T. DC Microgrids: A Propitious Smart Grid Paradigm for Smart Cities. Smart Cities 2023, 6, 1690–1718. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Parida, S.M.; Samanta, I.S.; Bajaj, M.; Piecha, M.; Blazek, V.; Prokop, L. A Comprehensive Review on Demand Side Management and Market Design for Renewable Energy Support and Integration. Energy Rep. 2023, 10, 2228–2250. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Energy Management Systems in Sustainable Smart Cities Based on the Internet of Energy: A Technical Review. Energies 2023, 16, 6903. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Sánchez-Miralles, A.; Villar, J. Energy Management and Planning in Smart Cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- Gundlach, J. Microgrids and Resilience to Climate-Driven Impacts on Public Health. Sabin Cent. Clim. Change Law Columbia Law Sch. 2018, 18, 77–130. [Google Scholar]
- Kumar, A.; Singh, A.R.; Raghav, L.P.; Deng, Y.; He, X.; Bansal, R.C.; Kumar, P.; Naidoo, R.M. State-of-the-Art Review on Energy Sharing and Trading of Resilient Multi Microgrids. iScience 2024, 27, 109549. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, T.B.; Siddiqui, M.; Khalid, M.; Asif, M. Distributed Energy Systems: A Review of Classification, Technologies, Applications, and Policies. Energy Strategy Rev. 2023, 48, 101096. [Google Scholar] [CrossRef]
- Morris, G.Y.; Abbey, C.; Wong, S.; Joós, G. Evaluation of the Costs and Benefits of Microgrids with Consideration of Services beyond Energy Supply. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–9. [Google Scholar]
- Altaf, M.W.; Arif, M.T.; Islam, S.N.; Haque, M.E. Microgrid Protection Challenges and Mitigation Approaches–A Comprehensive Review. IEEE Access 2022, 10, 38895–38922. [Google Scholar] [CrossRef]
- Hussain, A.; Bui, V.-H.; Kim, H.-M. Microgrids as a Resilience Resource and Strategies Used by Microgrids for Enhancing Resilience. Appl. Energy 2019, 240, 56–72. [Google Scholar] [CrossRef]
- Mishra, S.; Anderson, K.; Miller, B.; Boyer, K.; Warren, A. Microgrid Resilience: A Holistic Approach for Assessing Threats, Identifying Vulnerabilities, and Designing Corresponding Mitigation Strategies. Appl. Energy 2020, 264, 114726. [Google Scholar] [CrossRef]
- Padmavathy, R.; Singh, S.K.; Sindhu, M.; Jasim, L.H.; Saxena, A.; Dari, S.S. Enhancing Power Grid Resilience against Cyber Threats in the Smart Grid Era. E3S Web Conf. 2024, 540, 10021. [Google Scholar] [CrossRef]
- Liu, H.; Huang, L.; Dou, Z.; Wang, S. Campus Microgrid Protection: A Unified Approach against Cyberattacks. Front. Energy Res. 2024, 12, 1362412. [Google Scholar] [CrossRef]
- Moreno, R.; Trakas, D.N.; Jamieson, M.; Panteli, M.; Mancarella, P.; Strbac, G.; Marnay, C.; Hatziargyriou, N. Microgrids Against Wildfires: Distributed Energy Resources Enhance System Resilience. IEEE Power Energy Mag. 2022, 20, 78–89. [Google Scholar] [CrossRef]
- Mazhar, T.; Irfan, H.M.; Haq, I.; Ullah, I.; Ashraf, M.; Shloul, T.A.; Ghadi, Y.Y.; Imran; Elkamchouchi, D.H. Analysis of Challenges and Solutions of IoT in Smart Grids Using AI and Machine Learning Techniques: A Review. Electronics 2023, 12, 242. [Google Scholar] [CrossRef]
- Reka, S.S.; Dragicevic, T.; Venugopal, P.; Ravi, V.; Rajagopal, M.K. Big Data Analytics and Artificial Intelligence Aspects for Privacy and Security Concerns for Demand Response Modelling in Smart Grid: A Futuristic Approach. Heliyon 2024, 10, e35683. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.; Ibekwe, K.I.; Ilojianya, V.I.; Sonko, S.; Etukudoh, E.A.; Hamdan, A.; Ibekwe, K.I.; Ilojianya, V.I.; Sonko, S.; Etukudoh, E.A. AI in Renewable Energy: A Review of Predictive Maintenance and Energy Optimization. Int. J. Sci. Res. Arch. 2024, 11, 718–729. [Google Scholar] [CrossRef]
- Loni, A.; Asadi, S. Power System Resilience: The Role of Electric Vehicles and Social Disparities in Mitigating the US Power Outages. Smart Grids Energy 2024, 9, 23. [Google Scholar] [CrossRef]
- Dada, J.O. Towards Understanding the Benefits and Challenges of Smart/Micro-Grid for Electricity Supply System in Nigeria. Renew. Sustain. Energy Rev. 2014, 38, 1003–1014. [Google Scholar] [CrossRef]
- Bordbari, M.J.; Nasiri, F. Networked Microgrids: A Review on Configuration, Operation, and Control Strategies. Energies 2024, 17, 715. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of Microgrids with Converter-Interfaced Generations: Challenges and Opportunities. Int. J. Electr. Power Energy Syst. 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Ohalete, N.C.; Aderibigbe, A.O.; Ani, E.C.; Ohenhen, P.E.; Akinoso, A. Advancements in Predictive Maintenance in the Oil and Gas Industry: A Review of AI and Data Science Applications. World J. Adv. Res. Rev. 2023, 20, 167–181. [Google Scholar] [CrossRef]
- Khalid, M. Smart Grids and Renewable Energy Systems: Perspectives and Grid Integration Challenges. Energy Strategy Rev. 2024, 51, 101299. [Google Scholar] [CrossRef]
- Otay, İ.; Çevik Onar, S.; Öztayşi, B.; Kahraman, C. Evaluation of Sustainable Energy Systems in Smart Cities Using a Multi-Expert Pythagorean Fuzzy BWM & TOPSIS Methodology. Expert Syst. Appl. 2024, 250, 123874. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and Transport Planning Pathways to Carbon Neutral, Liveable and Healthy Cities; A Review of the Current Evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef] [PubMed]
- Huovila, A.; Siikavirta, H.; Antuña Rozado, C.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-Neutral Cities: Critical Review of Theory and Practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Tengilimoglu, O.; Carsten, O.; Wadud, Z. Implications of Automated Vehicles for Physical Road Environment: A Comprehensive Review. Transp. Res. Part E Logist. Transp. Rev. 2023, 169, 102989. [Google Scholar] [CrossRef]
- El Maghraoui, A.; El Hadraoui, H.; Ledmaoui, Y.; El Bazi, N.; Guennouni, N.; Chebak, A. Revolutionizing Smart Grid-Ready Management Systems: A Holistic Framework for Optimal Grid Reliability. Sustain. Energy Grids Netw. 2024, 39, 101452. [Google Scholar] [CrossRef]
- Khosravi, N.; Oubelaid, A.; Belkhier, Y. Energy Management in Networked Microgrids: A Comparative Study of Hierarchical Deep Learning and Predictive Analytics Techniques. Energy Convers. Manag. X 2025, 25, 100828. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Z.; Peng, X.; Wang, R. Deep Learning Solutions for Smart City Challenges in Urban Development. Sci. Rep. 2024, 14, 5176. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; David-Olawade, A.C.; Fapohunda, O.; Ige, A.O.; Ling, J. Artificial Intelligence Potential for Net Zero Sustainability: Current Evidence and Prospects. Next Sustain. 2024, 4, 100041. [Google Scholar] [CrossRef]
- Gonçalves, A.C.R.; Costoya, X.; Nieto, R.; Liberato, M.L.R. Extreme Weather Events on Energy Systems: A Comprehensive Review on Impacts, Mitigation, and Adaptation Measures. Sustain. Energy Res. 2024, 11, 4. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A Review of Hybrid Renewable Energy Systems: Solar and Wind-Powered Solutions: Challenges, Opportunities, and Policy Implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Haji-Aghajany, S.; Rohm, W.; Lipinski, P.; Kryza, M. Beyond the Horizon: A Critical Analysis of AI-Based Weather Forecasting Models. ESS Open Arch. 2024. [Google Scholar] [CrossRef]
- Aderibigbe, A.O.; Ani, E.C.; Ohenhen, P.E.; Ohalete, N.C.; Daraojimba, D.O. Enhancing Energy Efficiency with AI: A Review of Machine Learning Models in Electricity Demand Forecasting. Eng. Sci. Technol. J. 2023, 4, 341–356. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Ragupathi, C.; Dhanasekaran, S.; Vijayalakshmi, N.; Salau, A.O. Prediction of Electricity Consumption Using an Innovative Deep Energy Predictor Model for Enhanced Accuracy and Efficiency. Energy Rep. 2024, 12, 5320–5337. [Google Scholar] [CrossRef]
- Ibegbulam, C.M.; Aigbovbiosa, O.J.; Olowonubi, J.A.; Fatounde, S.A. Role of Artificial Intelligence in Electrification of Africa. Eng. Sci. Technol. J. 2023, 4, 456–472. [Google Scholar] [CrossRef]
- Hamdan, A.; Ibekwe, K.I.; Etukudoh, E.A.; Umoh, A.A.; Ilojianya, V.I. AI and Machine Learning in Climate Change Research: A Review of Predictive Models and Environmental Impact. World J. Adv. Res. Rev. 2024, 21, 1999–2008. [Google Scholar] [CrossRef]
- Sebestyén, V.; Czvetkó, T.; Abonyi, J. The Applicability of Big Data in Climate Change Research: The Importance of System of Systems Thinking. Front. Environ. Sci. 2021, 9, 619092. [Google Scholar] [CrossRef]
- Niri, A.J.; Poelzer, G.A.; Zhang, S.E.; Rosenkranz, J.; Pettersson, M.; Ghorbani, Y. Sustainability Challenges throughout the Electric Vehicle Battery Value Chain. Renew. Sustain. Energy Rev. 2024, 191, 114176. [Google Scholar] [CrossRef]
- Alkhalidi, A.; Khawaja, M.K.; Ismail, S.M. Solid-State Batteries, Their Future in the Energy Storage and Electric Vehicles Market. Sci. Talks 2024, 11, 100382. [Google Scholar] [CrossRef]
- Olabi, A.G.; Allam, M.A.; Abdelkareem, M.A.; Deepa, T.D.; Alami, A.H.; Abbas, Q.; Alkhalidi, A.; Sayed, E.T. Redox Flow Batteries: Recent Development in Main Components, Emerging Technologies, Diagnostic Techniques, Large-Scale Applications, and Challenges and Barriers. Batteries 2023, 9, 409. [Google Scholar] [CrossRef]
- Elalfy, D.A.; Gouda, E.; Kotb, M.F.; Bureš, V.; Sedhom, B.E. Comprehensive Review of Energy Storage Systems Technologies, Objectives, Challenges, and Future Trends. Energy Strategy Rev. 2024, 54, 101482. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Yao, J.; Guo, T.; Yang, F.; Zhang, Z.; Ren, J.; Jiang, L.; Li, B. An Overview of Application-Oriented Multifunctional Large-Scale Stationary Battery and Hydrogen Hybrid Energy Storage System. Energy Rev. 2024, 3, 100068. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Rezazadeh, A. Hydrogen Fuel and Electricity Generation from a New Hybrid Energy System Based on Wind and Solar Energies and Alkaline Fuel Cell. Energy Rep. 2021, 7, 2594–2604. [Google Scholar] [CrossRef]
- Ren, D.; Lu, L.; Hua, R.; Zhu, G.; Liu, X.; Mao, Y.; Rui, X.; Wang, S.; Zhao, B.; Cui, H.; et al. Challenges and Opportunities of Practical Sulfide-Based All-Solid-State Batteries. eTransportation 2023, 18, 100272. [Google Scholar] [CrossRef]
- Nyangon, J.; Darekar, A. Advancements in Hydrogen Energy Systems: A Review of Levelized Costs, Financial Incentives and Technological Innovations. Innov. Green Dev. 2024, 3, 100149. [Google Scholar] [CrossRef]
- Madureira, A.G.; Pereira, J.C.; Gil, N.J.; Lopes, J.A.P.; Korres, G.N.; Hatziargyriou, N.D. Advanced Control and Management Functionalities for Multi-Microgrids. Eur. Trans. Electr. Power 2011, 21, 1159–1177. [Google Scholar] [CrossRef]
- Safari, A.; Daneshvar, M.; Anvari-Moghaddam, A. Energy Intelligence: A Systematic Review of Artificial Intelligence for Energy Management. Appl. Sci. 2024, 14, 11112. [Google Scholar] [CrossRef]
- Birleanu, F.G.; Bizon, N. Control and Protection of the Smart Microgrids Using Internet of Things: Technologies, Architecture and Applications. In Microgrid Architectures, Control and Protection Methods; Mahdavi Tabatabaei, N., Kabalci, E., Bizon, N., Eds.; Springer International Publishing: Cham, Switzetland, 2020; pp. 749–770. ISBN 978-3-030-23723-3. [Google Scholar]
- Gawusu, S.; Zhang, X.; Ahmed, A.; Jamatutu, S.A.; Miensah, E.D.; Amadu, A.A.; Osei, F.A.J. Renewable Energy Sources from the Perspective of Blockchain Integration: From Theory to Application. Sustain. Energy Technol. Assess. 2022, 52, 102108. [Google Scholar] [CrossRef]
- Cui, M.; Feng, T.; Wang, H. How Can Blockchain Be Integrated into Renewable Energy?—A Bibliometric-Based Analysis. Energy Strategy Rev. 2023, 50, 101207. [Google Scholar] [CrossRef]
- Trivedi, R.; Khadem, S. Implementation of Artificial Intelligence Techniques in Microgrid Control Environment: Current Progress and Future Scopes. Energy AI 2022, 8, 100147. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Qu, Y.; Wang, J. The Impact of Artificial Intelligence on Firms’ Energy and Resource Efficiency: Empirical Evidence from China. Resour. Policy 2023, 82, 103507. [Google Scholar] [CrossRef]
- Egunjobi, O.O.; Gomes, A.; Egwim, C.N.; Morais, H. A Systematic Review of Blockchain for Energy Applications. e-Prime—Adv. Electr. Eng. Electron. Energy 2024, 9, 100751. [Google Scholar] [CrossRef]
- Mahmood, M.; Chowdhury, P.; Yeassin, R.; Hasan, M.; Ahmad, T.; Chowdhury, N.-U.-R. Impacts of Digitalization on Smart Grids, Renewable Energy, and Demand Response: An Updated Review of Current Applications. Energy Convers. Manag. X 2024, 24, 100790. [Google Scholar] [CrossRef]
- Majeed, Y.; Khan, M.U.; Waseem, M.; Zahid, U.; Mahmood, F.; Majeed, F.; Sultan, M.; Raza, A. Renewable Energy as an Alternative Source for Energy Management in Agriculture. Energy Rep. 2023, 10, 344–359. [Google Scholar] [CrossRef]
- Jufri, F.H.; Aryani, D.R.; Garniwa, I.; Sudiarto, B. Optimal Battery Energy Storage Dispatch Strategy for Small-Scale Isolated Hybrid Renewable Energy System with Different Load Profile Patterns. Energies 2021, 14, 3139. [Google Scholar] [CrossRef]
- Aghmadi, A.; Mohammed, O.A. Energy Storage Systems: Technologies and High-Power Applications. Batteries 2024, 10, 141. [Google Scholar] [CrossRef]
- Sayeed, F.; Hanumanthakari, S.; Oommen, S.; Anitha, G.; Hemavathi, S.; Pundir, A.K.S.; Sudhakar, M.; Sathyamurthy, R.; Mohanavel, V. A Novel and Comprehensive Mechanism for the Energy Management of a Hybrid Micro-Grid System. Energy Rep. 2022, 8, 847–862. [Google Scholar] [CrossRef]
- Zhou, X.; Mansouri, S.A.; Rezaee Jordehi, A.; Tostado-Véliz, M.; Jurado, F. A Three-Stage Mechanism for Flexibility-Oriented Energy Management of Renewable-Based Community Microgrids with High Penetration of Smart Homes and Electric Vehicles. Sustain. Cities Soc. 2023, 99, 104946. [Google Scholar] [CrossRef]
- Panda, A.; Dauda, A.K.; Chua, H.; Tan, R.R.; Aviso, K.B. Recent Advances in the Integration of Renewable Energy Sources and Storage Facilities with Hybrid Power Systems. Clean. Eng. Technol. 2023, 12, 100598. [Google Scholar] [CrossRef]
- Pandiyan, P.; Saravanan, S.; Usha, K.; Kannadasan, R.; Alsharif, M.H.; Kim, M.-K. Technological Advancements toward Smart Energy Management in Smart Cities. Energy Rep. 2023, 10, 648–677. [Google Scholar] [CrossRef]
- Obaideen, K.; Albasha, L.; Iqbal, U.; Mir, H. Wireless Power Transfer: Applications, Challenges, Barriers, and the Role of AI in Achieving Sustainable Development Goals—A Bibliometric Analysis. Energy Strategy Rev. 2024, 53, 101376. [Google Scholar] [CrossRef]
- Čábelková, I.; Strielkowski, W.; Wende, F.-D.; Krayneva, R. Factors Influencing the Threats for Urban Energy Networks: The Inhabitants’ Point of View. Energies 2020, 13, 5659. [Google Scholar] [CrossRef]
- Rezvani, S.M.; Falcão, M.J.; Komljenovic, D.; de Almeida, N.M. A Systematic Literature Review on Urban Resilience Enabled with Asset and Disaster Risk Management Approaches and GIS-Based Decision Support Tools. Appl. Sci. 2023, 13, 2223. [Google Scholar] [CrossRef]
- Almaleh, A.; Tipper, D.; Al-Gahtani, S.F.; El-Sehiemy, R. A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques. Appl. Sci. 2022, 12, 9756. [Google Scholar] [CrossRef]
- Hervás-Zaragoza, J.; Colmenar-Santos, A.; Rosales-Asensio, E.; Colmenar-Fernández, L. Microgrids as a Mechanism for Improving Energy Resilience during Grid Outages: A Post COVID-19 Case Study for Hospitals. Renew. Energy 2022, 199, 308–319. [Google Scholar] [CrossRef]
- Yu, H.; Niu, S.; Zhang, Y.; Jian, L. An Integrated and Reconfigurable Hybrid AC/DC Microgrid Architecture with Autonomous Power Flow Control for Nearly/Net Zero Energy Buildings. Appl. Energy 2020, 263, 114610. [Google Scholar] [CrossRef]
- Punitha, S.; Subramaniam, N.P.; Vimal Raj, P.A.D. A Comprehensive Review of Microgrid Challenges in Architectures, Mitigation Approaches, and Future Directions. J. Electr. Syst. Inf. Technol. 2024, 11, 60. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Li, Y.; Hu, G.; Wang, X.; Zhang, G.; Tao, H. Modularity, Reconfigurability, and Autonomy for the Future in Spacecraft: A Review. Chin. J. Aeronaut. 2023, 36, 282–315. [Google Scholar] [CrossRef]
- Khare, V.; Chaturvedi, P. Design, Control, Reliability, Economic and Energy Management of Microgrid: A Review. e-Prime—Adv. Electr. Eng. Electron. Energy 2023, 5, 100239. [Google Scholar] [CrossRef]
- Caputo, C.; Cardin, M.-A.; Ge, P.; Teng, F.; Korre, A.; Antonio del Rio Chanona, E. Design and Planning of Flexible Mobile Micro-Grids Using Deep Reinforcement Learning. Appl. Energy 2023, 335, 120707. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; Al-Turki, Y. Networked Microgrids for Enhancing the Power System Resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Galvan, E.; Mandal, P.; Sang, Y. Networked Microgrids with Roof-Top Solar PV and Battery Energy Storage to Improve Distribution Grids Resilience to Natural Disasters. Int. J. Electr. Power Energy Syst. 2020, 123, 106239. [Google Scholar] [CrossRef]
- Hamidieh, M.; Ghassemi, M. Microgrids and Resilience: A Review. IEEE Access 2022, 10, 106059–106080. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Gan, L.K.; Hussain, A.; Howey, D.A.; Kim, H.-M. Limitations in Energy Management Systems: A Case Study for Resilient Interconnected Microgrids. IEEE Trans. Smart Grid 2019, 10, 5675–5685. [Google Scholar] [CrossRef]
- Powell, J.; McCafferty-Leroux, A.; Hilal, W.; Gadsden, S.A. Smart Grids: A Comprehensive Survey of Challenges, Industry Applications, and Future Trends. Energy Rep. 2024, 11, 5760–5785. [Google Scholar] [CrossRef]
- Bari, L.F.; Ahmed, I.; Ahamed, R.; Zihan, T.A.; Sharmin, S.; Pranto, A.H.; Islam, M.R. Potential Use of Artificial Intelligence (AI) in Disaster Risk and Emergency Health Management: A Critical Appraisal on Environmental Health. Environ. Health Insights 2023, 17, 11786302231217808. [Google Scholar] [CrossRef]
- Marqusee, J.; Jenket, D. Reliability of Emergency and Standby Diesel Generators: Impact on Energy Resiliency Solutions. Appl. Energy 2020, 268, 114918. [Google Scholar] [CrossRef]
- Damaševičius, R.; Bacanin, N.; Misra, S. From Sensors to Safety: Internet of Emergency Services (IoES) for Emergency Response and Disaster Management. J. Sens. Actuator Netw. 2023, 12, 41. [Google Scholar] [CrossRef]
- Dai, D.; Bo, M.; Ren, X.; Dai, K. Application and Exploration of Artificial Intelligence Technology in Urban Ecosystem-Based Disaster Risk Reduction: A Scoping Review. Ecol. Indic. 2024, 158, 111565. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Taghikhah, F.R.; Maier, H.R. Explainable Artificial Intelligence in Disaster Risk Management: Achievements and Prospective Futures. Int. J. Disaster Risk Reduct. 2023, 98, 104123. [Google Scholar] [CrossRef]
- Biswal, B.; Deb, S.; Datta, S.; Ustun, T.S.; Cali, U. Review on Smart Grid Load Forecasting for Smart Energy Management Using Machine Learning and Deep Learning Techniques. Energy Rep. 2024, 12, 3654–3670. [Google Scholar] [CrossRef]
- Onwusinkwue, S.; Osasona, F.; Ahmad, I.A.I.; Anyanwu, A.C.; Dawodu, S.O.; Obi, O.C.; Hamdan, A. Artificial Intelligence (AI) in Renewable Energy: A Review of Predictive Maintenance and Energy Optimization. World J. Adv. Res. Rev. 2024, 21, 2487–2499. [Google Scholar] [CrossRef]
- Albahri, A.S.; Khaleel, Y.L.; Habeeb, M.A.; Ismael, R.D.; Hameed, Q.A.; Deveci, M.; Homod, R.Z.; Albahri, O.S.; Alamoodi, A.H.; Alzubaidi, L. A Systematic Review of Trustworthy Artificial Intelligence Applications in Natural Disasters. Comput. Electr. Eng. 2024, 118, 109409. [Google Scholar] [CrossRef]
- Javanroodi, K.; Perera, A.T.D.; Hong, T.; Nik, V.M. Designing Climate Resilient Energy Systems in Complex Urban Areas Considering Urban Morphology: A Technical Review. Adv. Appl. Energy 2023, 12, 100155. [Google Scholar] [CrossRef]
- Kalair, A.; Jamei, E.; Seyedmahmoudian, M.; Mekhilef, S.; Abas, N. Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN). Energies 2024, 17, 5862. [Google Scholar] [CrossRef]
- Ohenhen, P.E.; Chidolue, O.; Umoh, A.A.; Ngozichukwu, B.; Fafure, A.V.; Ilojianya, V.I.; Ibekwe, K.I. Sustainable Cooling Solutions for Electronics: A Comprehensive Review: Investigating the Latest Techniques and Materials, Their Effectiveness in Mechanical Applications, and Associated Environmental Benefits. World J. Adv. Res. Rev. 2024, 21, 957–972. [Google Scholar] [CrossRef]
- Rashid, F.L.; Al-Obaidi, M.A.; Dulaimi, A.; Bernardo, L.F.A.; Eleiwi, M.A.; Mahood, H.B.; Hashim, A. A Review of Recent Improvements, Developments, Effects, and Challenges on Using Phase-Change Materials in Concrete for Thermal Energy Storage and Release. J. Compos. Sci. 2023, 7, 352. [Google Scholar] [CrossRef]
- Said, Z.; Pandey, A.K.; Tiwari, A.K.; Kalidasan, B.; Jamil, F.; Thakur, A.K.; Tyagi, V.V.; Sarı, A.; Ali, H.M. Nano-Enhanced Phase Change Materials: Fundamentals and Applications. Prog. Energy Combust. Sci. 2024, 104, 101162. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, M.; Zhao, J.; Chen, M.; Shi, M. The Utilization of Shape Memory Alloy as a Reinforcing Material in Building Structures: A Review. Materials 2024, 17, 2634. [Google Scholar] [CrossRef]
- Ajirotutu, R.O.; Adeyemi, A.B.; Ifechukwu, G.-O.; Iwuanyanwu, O.; Ohakawa, T.C.; Garba, B.M.P. Future Cities and Sustainable Development: Integrating Renewable Energy, Advanced Materials, and Civil Engineering for Urban Resilience. Magna Sci. Adv. Res. Rev. 2024, 12, 235–250. [Google Scholar] [CrossRef]
- Azmeer, A.; Tahir, F.; Al-Ghamdi, S.G. Progress on Green Infrastructure for Urban Cooling: Evaluating Techniques, Design Strategies, and Benefits. Urban Clim. 2024, 56, 102077. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Kapucu, N.; Ge, Y.; Rott, E.; Isgandar, H. Urban Resilience: Multidimensional Perspectives, Challenges and Prospects for Future Research. Urban Gov. 2024, 4, 162–179. [Google Scholar] [CrossRef]
- Bose, D.; Bhattacharya, R.; Kaur, T.; Pandya, R.; Sarkar, A.; Ray, A.; Mondal, S.; Mondal, A.; Ghosh, P.; Chemudupati, R.I. Innovative Approaches for Carbon Capture and Storage as Crucial Measures for Emission Reduction within Industrial Sectors. Carbon Capture Sci. Technol. 2024, 12, 100238. [Google Scholar] [CrossRef]
- Mohanty, A.; Ramasamy, A.K.; Verayiah, R.; Bastia, S.; Dash, S.S.; Cuce, E.; Khan, T.M.Y.; Soudagar, M.E.M. Power System Resilience and Strategies for a Sustainable Infrastructure: A Review. Alex. Eng. J. 2024, 105, 261–279. [Google Scholar] [CrossRef]
- Mbungu, N.T.; Naidoo, R.M.; Bansal, R.C.; Siti, M.W.; Tungadio, D.H. An Overview of Renewable Energy Resources and Grid Integration for Commercial Building Applications. J. Energy Storage 2020, 29, 101385. [Google Scholar] [CrossRef]
- Lakshmi Narayanan, R.G.; Ibe, O.C. A Joint Network for Disaster Recovery and Search and Rescue Operations. Comput. Netw. 2012, 56, 3347–3373. [Google Scholar] [CrossRef]
- Linardos, V.; Drakaki, M.; Tzionas, P.; Karnavas, Y.L. Machine Learning in Disaster Management: Recent Developments in Methods and Applications. Mach. Learn. Knowl. Extr. 2022, 4, 446–473. [Google Scholar] [CrossRef]
- Thirumalai, M.; Hariharan, R.; Yuvaraj, T.; Prabaharan, N. Optimizing Distribution System Resilience in Extreme Weather Using Prosumer-Centric Microgrids with Integrated Distributed Energy Resources and Battery Electric Vehicles. Sustainability 2024, 16, 2379. [Google Scholar] [CrossRef]
- Wang, Y.; Rousis, A.O.; Strbac, G. On Microgrids and Resilience: A Comprehensive Review on Modeling and Operational Strategies. Renew. Sustain. Energy Rev. 2020, 134, 110313. [Google Scholar] [CrossRef]
- Poland, B.; Gloger, A.; Morgan, G.T.; Lach, N.; Jackson, S.F.; Urban, R.; Rolston, I. A Connected Community Approach: Citizens and Formal Institutions Working Together to Build Community-Centred Resilience. Int. J. Environ. Res. Public Health 2021, 18, 10175. [Google Scholar] [CrossRef] [PubMed]
- Phua, S.Z.; Hofmeister, M.; Tsai, Y.-K.; Peppard, O.; Lee, K.F.; Courtney, S.; Mosbach, S.; Akroyd, J.; Kraft, M. Fostering Urban Resilience and Accessibility in Cities: A Dynamic Knowledge Graph Approach. Sustain. Cities Soc. 2024, 113, 105708. [Google Scholar] [CrossRef]
- Norouzi, F.; Hoppe, T.; Kamp, L.M.; Manktelow, C.; Bauer, P. Diagnosis of the Implementation of Smart Grid Innovation in The Netherlands and Corrective Actions. Renew. Sustain. Energy Rev. 2023, 175, 113185. [Google Scholar] [CrossRef]
- Brown, D.; Hall, S.; Davis, M.E. What Is Prosumerism for? Exploring the Normative Dimensions of Decentralised Energy Transitions. Energy Res. Soc. Sci. 2020, 66, 101475. [Google Scholar] [CrossRef]
- Wolsink, M. Distributed Energy Systems as Common Goods: Socio-Political Acceptance of Renewables in Intelligent Microgrids. Renew. Sustain. Energy Rev. 2020, 127, 109841. [Google Scholar] [CrossRef]
- Mauger, R. Defining Microgrids: From Technology to Law. J. Energy Nat. Resour. Law 2023, 41, 287–304. [Google Scholar] [CrossRef]
- Wouters, C. Towards a Regulatory Framework for Microgrids—The Singapore Experience. Sustain. Cities Soc. 2015, 15, 22–32. [Google Scholar] [CrossRef]
- Bellido, M.H.; Rosa, L.P.; Pereira, A.O.; Falcão, D.M.; Ribeiro, S.K. Barriers, Challenges and Opportunities for Microgrid Implementation: The Case of Federal University of Rio de Janeiro. J. Clean. Prod. 2018, 188, 203–216. [Google Scholar] [CrossRef]
- Nyarko, K.; Whale, J.; Urmee, T. Drivers and Challenges of Off-Grid Renewable Energy-Based Projects in West Africa: A Review. Heliyon 2023, 9, e16710. [Google Scholar] [CrossRef]
- Eklund, M.; Khalilpour, K.; Voinov, A.; Hossain, M.J. Community Microgrids: A Decision Framework Integrating Social Capital with Business Models for Improved Resiliency. Appl. Energy 2024, 367, 123458. [Google Scholar] [CrossRef]
- Faia, R.; Lezama, F.; Soares, J.; Pinto, T.; Vale, Z. Local Electricity Markets: A Review on Benefits, Barriers, Current Trends and Future Perspectives. Renew. Sustain. Energy Rev. 2024, 190, 114006. [Google Scholar] [CrossRef]
- Glemarec, Y. Financing Off-Grid Sustainable Energy Access for the Poor. Energy Policy 2012, 47, 87–93. [Google Scholar] [CrossRef]
- Wu, H.; Carroll, J.; Denny, E. Harnessing Citizen Investment in Community-Based Energy Initiatives: A Discrete Choice Experiment across Ten European Countries. Energy Res. Soc. Sci. 2022, 89, 102552. [Google Scholar] [CrossRef]
- Ali, A.; Li, W.; Hussain, R.; He, X.; Williams, B.W.; Memon, A.H. Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability 2017, 9, 1146. [Google Scholar] [CrossRef]
- Sun, B.; Li, M.; Wang, F.; Xie, J. An Incentive Mechanism to Promote Residential Renewable Energy Consumption in China’s Electricity Retail Market: A Two-Level Stackelberg Game Approach. Energy 2023, 269, 126861. [Google Scholar] [CrossRef]
- Zerka, A.; Ouassaid, M.; Maaroufi, M.; Rabeh, R. Towards Net Zero: Comprehensive Approach for Voluntary Carbon Trading among Microgrids. Heliyon 2024, 10, e39106. [Google Scholar] [CrossRef]
- Tzani, D.; Stavrakas, V.; Santini, M.; Thomas, S.; Rosenow, J.; Flamos, A. Pioneering a Performance-Based Future for Energy Efficiency: Lessons Learnt from a Comparative Review Analysis of Pay-for-Performance Programmes. Renew. Sustain. Energy Rev. 2022, 158, 112162. [Google Scholar] [CrossRef]
- Polzin, F.; Egli, F.; Steffen, B.; Schmidt, T.S. How Do Policies Mobilize Private Finance for Renewable Energy?—A Systematic Review with an Investor Perspective. Appl. Energy 2019, 236, 1249–1268. [Google Scholar] [CrossRef]
- Agupugo, C.P.; Ajayi, A.O.; Nwanevu, C.; Oladipo, S.S. Policy and Regulatory Framework Supporting Renewable Energy Microgrids and Energy Storage Systems. Eng. Sci. Technol. J. 2024, 5, 2589–2615. [Google Scholar] [CrossRef]
- Nwanevu, C.; Oladipo, S.S.; Ajayi, A.O. Designing Effective Policy Frameworks for the Implementation of Microgrids in Developing Countries: Opportunities, Challenges and Pathways to Sustainable Energy Access. World J. Adv. Res. Rev. 2024, 24, 1279–1294. [Google Scholar] [CrossRef]
Feature | Traditional Grid | Smart Microgrid |
---|---|---|
Energy Source | Centralized, fossil fuel-based | Decentralized, renewable-focused |
Reliability | Prone to blackouts and failures | Self-healing, resilient, and adaptive |
Energy Efficiency | High transmission losses | Reduced losses through localized generation |
Flexibility | Rigid and difficult to expand | Modular and scalable |
Control Mechanism | Centralized control | AI-driven, real-time adaptive control |
Integration with Renewables | Limited capability | Seamless integration with solar and wind |
Response to Disruptions | Slow restoration, centralized dependency | Quick recovery with islanding capabilities |
Economic Model | High operational costs, utility-dependent | Cost-efficiency supports P2P energy trading |
Regulatory Framework | Highly regulated, slow policy adaptation | Emerging requires supportive policies |
Scalability | Difficult and expensive to upgrade | Easily expandable in urban environments |
Technology | Benefits | Challenges |
---|---|---|
AI-based EMS | Optimizes energy usage, reduces waste, enhances grid stability | High implementation cost requires extensive data infrastructure |
HESS | Improves energy storage efficiency, supports renewable integration | Complex integration, variable performance over time |
P2P Energy Trading | Decentralizes energy distribution, reduces reliance on the main grid | Regulatory barriers require blockchain implementation |
Edge AI for Decentralized Control | Enhances microgrid resilience, reduces cybersecurity risks | Requires real-time data processing capabilities |
Metric | Lithium-Ion Batteries | Hybrid Energy Storage Model |
---|---|---|
Energy Density | High | Variable (depends on storage type) |
Cycle Life | ~5000 charge cycles | Higher due to diverse storage technologies |
Efficiency | 85–95% | 70–90% (varies by storage component) |
Cost per kWh | USD 137 (2023 estimates) | Higher initial cost but lower operational costs |
Scalability | Limited by material availability | High scalability, modular approach |
Environmental Impact | Resource-intensive recycling challenges | Reduced dependence on rare materials |
Feature | Traditional Grid | Smart Microgrid |
---|---|---|
Reliability | Vulnerable to cascading failures | Self-healing and localized power resilience |
Island Mode Capability | Non-existent | Can operate independently during outages |
Recovery Speed | Requires extensive grid repairs | Rapid restoration due to modular structure |
Energy Source | Centralized fossil fuel-based power plants | Decentralized renewable sources |
Flexibility | Rigid, slow adaptation | Modular and adaptable to changing conditions |
Cybersecurity Risks | High vulnerability to cyber threats | AI-driven threat detection and response |
Feature | Description | Benefit |
---|---|---|
Island Mode Operation | Can disconnect from the main grid during outages | Ensures continuous power supply for critical infrastructure |
Modular Architecture | Uses interchangeable energy storage and control units | Enables rapid system restoration and upgrades |
AI-Driven Predictive Maintenance | Uses machine learning for early fault detection | Reduces system failures and enhances reliability |
Decentralized Control | AI-based real-time energy optimization | Improves response time and grid flexibility |
Renewable Energy Integration | Uses solar, wind, and hybrid storage | Reduces reliance on fossil fuels and improves sustainability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almihat, M.G.M.; Munda, J.L. The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning. Energies 2025, 18, 1618. https://doi.org/10.3390/en18071618
Almihat MGM, Munda JL. The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning. Energies. 2025; 18(7):1618. https://doi.org/10.3390/en18071618
Chicago/Turabian StyleAlmihat, Mohamed G. Moh, and Josiah L. Munda. 2025. "The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning" Energies 18, no. 7: 1618. https://doi.org/10.3390/en18071618
APA StyleAlmihat, M. G. M., & Munda, J. L. (2025). The Role of Smart Grid Technologies in Urban and Sustainable Energy Planning. Energies, 18(7), 1618. https://doi.org/10.3390/en18071618