Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Indication |
---|---|
Sensor/Transducer type | Cup anemometer/Optico-chopper |
Measuring range | 0.4…75 m/s |
Starting threshold | <0.5 m/s |
Accuracy (within 0.4…60 m/s), with characteristic transfer function | ±0.17 m/s |
With “simple transfer function” Ut = 0.1 × R | ±0.5 m/s |
Parameter | Indication |
---|---|
Sensor/Transducer type | Vane/Optical code disc |
Measuring range | 0…360° |
Starting threshold | <0.4 m/s |
Resolution | 5.6° |
Accuracy | Better than ±3° |
Setting time after power turn-on | <100 µs |
Dealy distance | 0.4 m |
Parameter | Indication |
---|---|
Spectral range (50% points) | 285 to 2800 nm |
Sensitivity | 7 to 14 µV/W/m2 |
Response time (95%) | <5 s |
Zero ofset A | <±7 W/m2 |
Zero ofset B | <±2 W/m2 |
Directional response (up to 80° with 1000 W/m2 beam) | |
Temperature response (−20 to ±50 °C) | <±1% |
Operational temperature | −40 °C to +80 °C |
Maximum solar irradiance | 4000 W/m2 |
Fielf of view | 180° |
Parameter | Indication |
---|---|
Observation range | WMT701: 0….40 m/s |
Starting threshold | 0.01 m/s |
Resolution time | 250 ms |
Accuracy | 0…75 m/s ±0.1 m/s or 2% of reading, whichever is greater |
Observation range | 0…360° |
Starting threshold | 0.1 m/s |
Resolition | 0.01° |
Response time | 250 ms |
Accuracy | ± 2° |
Observation range | WMT701: 0….40 m/s |
References
- Benhacene, H.L.M.; Hussien, A.M. The Impact of Adopting Renewable Energy Resources on Sustainable Development in Saudi Arabia: A Qualitative View. Sustainability 2025, 17, 768. [Google Scholar] [CrossRef]
- Kies, A.; Schyska, B.; Von Bremen, L. The Demand Side Management Potential to Balance a Highly Renewable European Power System. Energies 2016, 9, 955. [Google Scholar] [CrossRef]
- Shen, C.-L.; Shen, Y.-S. Output Filter Design for a Novel Dual-Input PV-Wind Power Converter by Energy Balance Principle. Appl. Sci. 2016, 6, 263. [Google Scholar] [CrossRef]
- Boubii, C.; El Kafazi, I.; Bannari, R.; El Bhiri, B.; Bossoufi, B.; Kotb, H.; AboRas, K.M.; Emara, A.; Nasiri, B. Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability. Sustainability 2024, 16, 815. [Google Scholar] [CrossRef]
- Frimpong, S.O.; Agbehadji, I.E.; Abayomi, A.; Millham, R.C.; Freeman, E.; Ujakpa, M.M. Economic and Reliability Determination of Sustainable Renewable Energy Mix Based on Social Spider Prey Optimization Algorithm. Soft Comput. 2023, 27, 10687–10718. [Google Scholar] [CrossRef]
- Syed, A.S.; Patrick, A.; Lauf, A.; Elmaghraby, A. Assessing the Complementarity of Wind and Solar Energy in Kentucky. Energies 2024, 17, 3226. [Google Scholar] [CrossRef]
- Larsen, M.A.D.; Bournhonesque, J.; Thiery, W.; Halsnæs, K.; Hattermann, F.F.; Hoff, H.; Salack, S.; Adenle, A.; Liersch, S. Renewable Energy Planning in Africa: Robustness of Mean and Extreme Multi-Model Climate Change Patterns in Solar PV and Wind Energy Potentials. Environ. Res. Commun. 2024, 6, 15001. [Google Scholar] [CrossRef]
- Pierro, M.; Barba, M.; Perez, R.; Perez, M.; Moser, D.; Cornaro, C. Ancillary Services via Flexible Photovoltaic/Wind Systems and “Implicit” Storage to Balance Demand and Supply. Solar RRL 2023, 7, 2200704. [Google Scholar] [CrossRef]
- Belhadef, O.; Merahi, F.; Badoud, A.E. Energy Management Systems for Hybrid Renewable Energy Systems: A Comprehensive Review. In Proceedings of the 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), Setif, Algeria, 12–14 May 2024; pp. 1–6. [Google Scholar]
- Benato, A.; De Vanna, F.; Stoppato, A. Levelling the Photovoltaic Power Profile with the Integrated Energy Storage System. Energies 2022, 15, 9521. [Google Scholar] [CrossRef]
- Niu, X.; Luo, X. Policies and Economic Efficiency for Distributed Photovoltaic and Energy Storage Industry. Distrib. Gener. Altern. Energy J. 2023, 38, 1197–1222. [Google Scholar] [CrossRef]
- Ho-Tran, L.; Fiedler, S. More Summertime Low-Power Production Extremes in Germany with a Larger Solar Power Share. Solar Energy 2024, 283, 112979. [Google Scholar] [CrossRef]
- Fasihi, M.; Weiss, R.; Savolainen, J.; Breyer, C. Global Potential of Green Ammonia Based on Hybrid PV-Wind Power Plants. Appl. Energy 2021, 294, 116170. [Google Scholar] [CrossRef]
- Dietrich, U. Zero-Energy Buildings in Cities with Different Climates and Urban Densities: Emergy Demand, Renewable Energy Harvest On-Site and Off-Site and Total Land Use for Different Renewable Technologies. Int. J. Energy Prod. Manag. 2021, 6, 335–346. [Google Scholar] [CrossRef]
- Salkuti, S.R. Optimal Operation of Electrified Railways with Renewable Sources and Storage. J. Electr. Eng. Technol. 2021, 16, 239–248. [Google Scholar] [CrossRef]
- Chen, Y.; Kirkerud, J.G.; Bolkesjø, T.F. Balancing GHG Mitigation and Land-Use Conflicts: Alternative Northern European Energy System Scenarios. Appl. Energy 2022, 310, 118557. [Google Scholar] [CrossRef]
- Silva, A.R.; Pousinho, H.M.I.; Estanqueiro, A. A Multistage Stochastic Approach for the Optimal Bidding of Variable Renewable Energy in the Day-Ahead, Intraday and Balancing Markets. Energy 2022, 258, 124856. [Google Scholar] [CrossRef]
- Nnodim, C.T.; Kpu, G.C.; Okhuegbe, S.N.; Ajani, A.A.; Adebayo, S.; Diarah, R.S.; Aliyu, S.J.; Onokwai, A.O.; Osueke, C.O. Figures of Merit for Wind and Solar PV Integration in Electricity Grids. J. Sci. Ind. Res. 2022, 81, 349–357. [Google Scholar]
- Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, B.R. Extreme Learning Machines for Solar Photovoltaic Power Predictions. Energies 2018, 11, 2725. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Ruiz-Arias, J.A.; Lara-Fanego, V.; Tovar-Pescador, J. Analysis of Spatiotemporal Balancing between Wind and Solar Energy Resources in the Southern Iberian Peninsula. J. Appl. Meteorol. Climatol. 2012, 51, 2005–2024. [Google Scholar] [CrossRef]
- Veluchamy, K.; Veluchamy, M. A New Energy Management Technique for Microgrid System Using Muddy Soil Fish Optimization Algorithm. Int. J. Energy Res. 2021, 45, 14824–14844. [Google Scholar] [CrossRef]
- Velosa, N.; Gomes, E.; Morais, H.; Pereira, L. PROCSIM: An Open-Source Simulator to Generate Energy Community Power Demand and Generation Scenarios. Energies 2023, 16, 1611. [Google Scholar] [CrossRef]
- Lippert, M. Balancing Renewables with Li-Ion Energy Storage. Power 2014, 158, 34. [Google Scholar]
- Tafarte, P.; Hennig, C.; Dotzauer, M.; Thrän, D. Impact of Flexible Bioenergy Provision on Residual Load Fluctuation: A Case Study for the TransnetBW Transmission System in 2022. Energy Sustain. Soc. 2017, 7, 3. [Google Scholar] [CrossRef]
- Schmidt, J.; Cancella, R.; Pereira, A.O. The Role of Wind Power and Solar PV in Reducing Risks in the Brazilian Hydro-Thermal Power System. Energy 2016, 115, 1748–1757. [Google Scholar] [CrossRef]
- Carbajales-Dale, M.; Barnhart, C.J.; Benson, S.M. Can We Afford Storage? A Dynamic Net Energy Analysis of Renewable Electricity Generation Supported by Energy Storage. Energy Environ. Sci. 2014, 7, 1538–1544. [Google Scholar] [CrossRef]
- Haegel, N.M.; Kurtz, S.R. Global Progress Toward Renewable Electricity: Tracking the Role of Solar (Version 3). IEEE J. Photovolt. 2023, 13, 768–776. [Google Scholar] [CrossRef]
- Al Hadi, A.; Silva, C.A.S.; Hossain, E.; Challoo, R. Algorithm for Demand Response to Maximize the Penetration of Renewable Energy. IEEE Access 2020, 8, 55279–55288. [Google Scholar] [CrossRef]
- Stamatakis, M.E.; Stamataki, E.E.; Stamelos, A.P.; Ioannides, M.G. Energy Management in a Super-Tanker Powered by Solar, Wind, Hydrogen and Boil-Off Gas for Saving CO2 Emissions. Electronics 2024, 13, 1567. [Google Scholar] [CrossRef]
- Shepherd, J.; Haider Ali Khan, M.; Amal, R.; Daiyan, R.; MacGill, I. Open-Source Project Feasibility Tools for Supporting Development of the Green Ammonia Value Chain. Energy Convers. Manag. 2022, 274, 116413. [Google Scholar] [CrossRef]
- Hou, X.; Wild, M.; Folini, D.; Kazadzis, S.; Wohland, J. Climate Change Impacts on Solar Power Generation and Its Spatial Variability in Europe Based on CMIP6. Earth Syst. Dyn. 2021, 12, 1099–1113. [Google Scholar] [CrossRef]
- Madiba, T.; Bansal, R.C.; Justo, J.J.; Kusakana, K. Optimal Control System of under Frequency Load Shedding in Microgrid System with Renewable Energy Resources. In Smart Energy Grid Design for Island Countries; Green Energy Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 71–96. [Google Scholar] [CrossRef]
- Coles, D.; Wray, B.; Stevens, R.; Crawford, S.; Pennock, S.; Miles, J. Impacts of Tidal Stream Power on Energy System Security: An Isle of Wight Case Study. Appl. Energy 2023, 334, 120686. [Google Scholar] [CrossRef]
- Jiang, H.; Du, E.; He, B.; Zhang, N.; Wang, P.; Li, F.; Ji, J. Analysis and modeling of seasonal characteristics of renewable energy generation. Renew. Energy 2023, 219, 119414. [Google Scholar] [CrossRef]
- Frank, C.; Fiedler, S.; Crewell, S. Balancing Potential of Natural Variability and Extremes in Photovoltaic and Wind Energy Production for European Countries. Renew. Energy 2021, 163, 674–684. [Google Scholar] [CrossRef]
- Keskkonnaagentuur ILM. Estonian Environment Agency Weather Services. Available online: https://www.ilmateenistus.ee/?lang=en (accessed on 3 March 2025).
- Vaisala. Wind Sensors. Available online: https://www.vaisala.com/en/products/weather-environmental-sensors/wind (accessed on 3 March 2025).
- Pyranometer CMP21. Available online: https://www.kippzonen.com/Product/14/CMP21-Pyranometer (accessed on 3 March 2025).
- Ultrasonic Wind Sensor WMT700. Available online: https://www.vaisala.com/en/products/weather-environmental-sensors/windcap-ultrasonic-wind-sensor-wmt700 (accessed on 3 March 2025).
- TUGE20. TUGE Small Wind Turbines. Available online: https://www.tuge.ee (accessed on 3 March 2025).
- Land Monitoring Service. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 3 March 2025).
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; Wiley: Hoboken, NJ, USA, 2013; ISBN 9780470873663. [Google Scholar]
- Erbs, D.G.; Klein, S.A.; Duffie, J.A. Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-Average Global Radiation. Solar Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Eurostat. Consumption of Electricity per Capita in the Household Sector. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics#General_overview (accessed on 29 March 2025).
- Annuk, A.; Hovi, M.; Kalder, J.; Kabanen, T.; Ilves, R.; Marss, M.; Martinkauppi, B.; Miidla, P. Methods for Increasing Shares of Self-Consumption in Small PV Solar Energy Applications. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020; pp. 184–187. [Google Scholar]
- Põder, V.; Lepa, J.; Palge, V.; Peets, T.; Annuk, A. The Estimation of Needed Capacity of a Storage System According to Load and Wind Parameters. Oil Shale 2009, 26, 283–293. [Google Scholar] [CrossRef]
- Khan, T.; Waseem, M.; Muqeet, H.A.; Hussain, M.M.; Yu, M.; Annuk, A. 3E Analyses of Battery-Assisted Photovoltaic-Fuel Cell Energy System: Step towards Green Community. Energy Rep. 2022, 8, 184–191. [Google Scholar] [CrossRef]
- Vanhoudt, D.; Geysen, D.; Claessens, B.; Leemans, F.; Jespers, L.; Van Bael, J. An Actively Controlled Residential Heat Pump: Potential on Peak Shaving and Maximization of Self-Consumption of Renewable Energy. Renew. Energy 2014, 63, 531–543. [Google Scholar] [CrossRef]
- Annuk, A.; Allik, A.; Prikk, P.; Uiga, J.; Tammoja, H.; Toom, K.; Olt, J. Increasing Renewable Fraction by Smoothing Consumer Power Charts in Grid-Connected Wind-Solar Hybrid Systems. Oil Shale 2013, 30, 257. [Google Scholar] [CrossRef]
- Kalder, J.; Allik, A.; Hõimoja, H.; Jõgi, E.; Hovi, M.; Märss, M.; Kurnitski, J.; Fadejev, J.; Lill, H.; Jasinskas, A.; et al. Optimal Wind/Solar Energy Mix for Residential Net Zero-Energy Buildings. In Proceedings of the International Scientific Conference “RURAL DEVELOPMENT 2017”, Kaunas, Lithuania, 23–24 November 2017; Aleksandras Stulginskis University: Kaunas, Lithuania, 2018. [Google Scholar] [CrossRef]
- Becker, S.; Frew, B.A.; Andresen, G.B.; Zeyer, T.; Schramm, S.; Greiner, M.; Jacobson, M.Z. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions. Energy 2014, 72, 443–458. [Google Scholar] [CrossRef]
- Pickering, S.; Rostkowski, I.; Fodey, S.; Huebbsch, M.; Clases, Z.; Ticknor, D.; Mccalley, J.; Okullo, J.; Heath, B.; Figuerosa-Acevedo, A. Power System Resource Adequacy Evaluation under Increasing Renewables for the Midwestern US. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019. [Google Scholar] [CrossRef]
- Tsuchiya, H. Electricity supply largely from solar and wind resources in Japan. Renew. Energy 2012, 48, 318–325. [Google Scholar] [CrossRef]
- Andresen, G.B.; Rodriguez, R.A.; Becker, S.; Greiner, M. The potential for arbitrage of wind and solar surplus power in Denmark. Energy 2014, 76, 49–58. [Google Scholar] [CrossRef]
Study | Methodology | Objectives | Results |
---|---|---|---|
Benato et al. [10] | Integration of energy storage with PV systems | Optimize power output stabilization | Virtual power plant model improved power stability |
Niu and Luo [11] | Economic analysis of distributed PV systems and storage | Evaluate grid adaptability and storage efficiency | Optimized framework enhanced stability and reliability |
Frank et al. [35] | Analysis of seasonal renewable production in Germany | Study extreme low-power events | Identified increased risk of summer production deficits |
Fasihi et al. [13] | Green ammonia production with hybrid PV–wind systems | Assess cost competitiveness | Found feasible cost levels for green ammonia by 2040 |
Year | Capacity CFwind | Factors CFPV | Vavg m/s | Pwind kW | PPV kW |
---|---|---|---|---|---|
2023 | 0.363 | 0.120 | 5.13 | 7.26 | 0.66 |
2022 | 0.367 | 0.117 | 5.21 | 7.35 | 0.65 |
2021 | 0.382 | 0.116 | 5.37 | 7.65 | 0.64 |
2020 | 0.488 | 0.118 | 6.48 | 9.77 | 0.65 |
2019 | 0.398 | 0.116 | 5.53 | 7.96 | 0.64 |
2018 | 0.346 | 0.121 | 4.91 | 6.91 | 0.66 |
2017 | 0.397 | 0.111 | 5.54 | 7.95 | 0.61 |
2016 | 0.372 | 0.114 | 5.24 | 7.44 | 0.63 |
2015 | 0.443 | 0.117 | 5.96 | 8.87 | 0.64 |
2014 | 0.394 | 0.115 | 5.48 | 7.88 | 0.64 |
Average | 0.395 | 0.116 | 5.49 | 7.90 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meister, R.; Yaïci, W.; Moezzi, R.; Gheibi, M.; Hovi, K.; Annuk, A. Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production. Energies 2025, 18, 1871. https://doi.org/10.3390/en18071871
Meister R, Yaïci W, Moezzi R, Gheibi M, Hovi K, Annuk A. Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production. Energies. 2025; 18(7):1871. https://doi.org/10.3390/en18071871
Chicago/Turabian StyleMeister, Riho, Wahiba Yaïci, Reza Moezzi, Mohammad Gheibi, Külli Hovi, and Andres Annuk. 2025. "Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production" Energies 18, no. 7: 1871. https://doi.org/10.3390/en18071871
APA StyleMeister, R., Yaïci, W., Moezzi, R., Gheibi, M., Hovi, K., & Annuk, A. (2025). Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production. Energies, 18(7), 1871. https://doi.org/10.3390/en18071871