Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Analysis of TiO2 Deposited on MPL via Sputtering Process
3.2. Fuel Cell Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molaeimanesh, G.R.; Torabi, F. Fuel Cell Fundamentals. In Fuel Cell Modeling and Simulation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–56. ISBN 9781119113805. [Google Scholar]
- Wu, D.; Peng, C.; Yin, C.; Tang, H. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells; Springer: Berlin/Heidelberg, Germany, 2020; Volume 3, ISBN 0123456789. [Google Scholar]
- Yoo, H.J.; Cho, G.Y. Effects of Humidification with NaCl Solution Mist on Electrochemical Characteristics of Polymer Electrolyte Membrane Fuel Cells. Sustainability 2022, 14, 16242. [Google Scholar] [CrossRef]
- Hong, K.W.; Kwon, Y.R.; Song, D.K.; Jung, D.Y.; Kang, B.K.; Kwon, S.K. Fabrication and Characterization of Pt-Pr6O11 Nano Cathode Electrode for Polymer Electrolyte Membrane Fuel Cells via Co-Sputtering Method. Sustainability 2025, 17, 198. [Google Scholar] [CrossRef]
- Jang, G.E.; Cho, G.Y. Effects of Ag Current Collecting Layer Fabricated by Sputter for 3D-Printed Polymer Bipolar Plate of Ultra-Light Polymer Electrolyte Membrane Fuel Cells. Sustainability 2022, 14, 2997. [Google Scholar] [CrossRef]
- Yoo, H.J.; Cho, G.Y. Influences of Flow Channel on Electrochemical Characteristics of Polymer Electrolyte Fuel Cells Humidified with NaCl Contained H2O. Sustainability 2023, 15, 2415. [Google Scholar] [CrossRef]
- Jung, D.Y.; Song, D.K.; Kim, J.S.; Lee, S.H.; Min, G.W.; Son, J.H.; Cho, G.Y. Numerical Investigation of Effects of Obstacles in Flow Channels and Depth of Flow Channels for PEMFCs. Sustainability 2024, 16, 10144. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrogen Energy 2014, 40, 11094–11111. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Lee, S.M.; Yu, S. A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell. Energies 2023, 16, 4772. [Google Scholar] [CrossRef]
- Lei, H.; Xia, Y.; Hu, G. Effects of Inhomogeneous Gas Diffusion Layer Properties on the Transportation Phenomenon and Performances of Proton-Exchange Membrane Fuel Cells. ACS Omega 2024, 9, 9383–9395. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, Y.; Ma, L.; Zhu, Y.; Li, Y.; Tao, J.; Tian, G. A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM. Sensors 2023, 23, 166. [Google Scholar] [CrossRef]
- Borup, R.; Meyers, J.; Pivovar, B.S.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904–3951. [Google Scholar] [CrossRef]
- Endoh, E.; Honmura, S.; Terazono, S.; Widjaja, H.; Takimoto, Y. Degradation Study of MEA for PEMFC under Low Humidity Conditions. Proc. Electrochem. Soc. 2004, 2004, 363–369. [Google Scholar] [CrossRef]
- Zaveri, J.C.; Dhanushkodi, S.R.; Kumar, C.R.; Taler, J.; Majdak, M.; Węglowski, B. Predicting the Performance of PEM Fuel Cells by Determining Dehydration or Flooding in the Cell Using Machine Learning Models. Energies 2023, 16, 6968. [Google Scholar] [CrossRef]
- Wang, X.R.; Ma, Y.; Gao, J.; Li, T.; Jiang, G.Z.; Sun, Z.Y. Review on Water Management Methods for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy 2021, 46, 12206–12229. [Google Scholar] [CrossRef]
- Jienkulsawad, P.; Chen, Y.S.; Arpornwichanop, A. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations. Polymers 2020, 12, 1865. [Google Scholar] [CrossRef]
- Bai, Q.; Hsieh, C.; Liu, Z.; Chen, Q.; Weng, F. Study on the Alleviation of Performance Degradation and Voltage Stability of PEMFC by Adding Silica Under Low-Temperature and Low-Humidity Conditions. Crystals 2024, 14, 1089. [Google Scholar] [CrossRef]
- Chun, J.H.; Park, K.T.; Jo, D.H.; Lee, J.Y.; Kim, S.G.; Park, S.H.; Lee, E.S.; Jyoung, J.Y.; Kim, S.H. Development of a Novel Hydrophobic/Hydrophilic Double Micro Porous Layer for Use in a Cathode Gas Diffusion Layer in PEMFC. Int. J. Hydrogen Energy 2011, 36, 8422–8428. [Google Scholar] [CrossRef]
- Dang, D.K.; Zhou, B. Enhanced Water Management in PEMFC Cathode Using Streamlined Baffles. J. Power Sources 2024, 623, 235475. [Google Scholar] [CrossRef]
- Zhou, K.; Li, T.; Han, Y.; Wang, J.; Chen, J.; Wang, K. Optimizing the Hydrophobicity of GDL to Improve the Fuel Cell Performance. RSC Adv. 2021, 11, 2010–2019. [Google Scholar] [CrossRef]
- Yang, D.; Fortin, P.; Garg, H.; Andersson, M. The Influence of Bipolar Plate Wettability on Performance and Durability of a Proton Exchange Membrane Fuel Cell. Int. J. Hydrogen Energy 2024, 95, 1284–1298. [Google Scholar] [CrossRef]
- Ji, M.; Wei, Z. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells. Energies 2009, 2, 1057–1106. [Google Scholar] [CrossRef]
- Pedapati, P.R.; Dhanushkodi, S.R.; Chidambaram, R.K.; Taler, D.; Sobota, T.; Taler, J. Design and Manufacturing Challenges in PEMFC Flow Fields—A Review. Energies 2024, 17, 3499. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Otor, C. A Review of Gas Diffusion Layer Properties and Water Management in Proton Exchange Membrane Fuel Cell System. Int. J. Energy Res. 2021, 45, 3780–3800. [Google Scholar] [CrossRef]
- Sun, X.; Xu, H.; Lu, L.; Xing, W.; Zhao, H. Preparing a Catalyst Layer in Magnetic Field to Improve the Performance of Proton Exchange Membrane Fuel Cells. J. Appl. Electrochem. 2014, 44, 1179–1184. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, X.; Liu, G.; Xu, H.; Guan, C.; Wang, H.; Li, H.; He, W.; Qin, Y. Review of Flow Field Designs for Polymer Electrolyte Membrane Fuel Cells. Energies 2023, 16, 4207. [Google Scholar] [CrossRef]
- Isa, M.I.M.; Aziz, A.A. Optimized Flow Field Bipolar Plate Design in Proton Exchange Membrane Fuel Cell. In Proceedings of the 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 19–21 September 2012; pp. 674–677. [Google Scholar] [CrossRef]
- Angayarkanni, R.; Ganesan, A.; Dhelipan, M.; Karthikeyan, S.; Mani, N.; Thiyagarajan, P. Self-Humidified Operation of a PEM Fuel Cell Using a Novel Silica Composite Coating Method. Int. J. Hydrogen Energy 2022, 47, 4827–4837. [Google Scholar] [CrossRef]
- Choi, I.; Lee, H.; Lee, K.G.; Ahn, S.H.; Lee, S.J.; Kim, H.J.; Lee, H.N.; Kwon, O.J. Characterization of Self-Humidifying Ability of SiO2-Supported Pt Catalyst under Low Humidity in PEMFC. Appl. Catal. B Environ. 2015, 168, 220–227. [Google Scholar] [CrossRef]
- Fang, S.Y.; Teoh, L.G.; Huang, R.H.; Hsueh, K.L.; Yang, K.H.; Chao, W.K.; Shieu, F.S. Enhancement of Proton Exchange Membrane Fuel Cell Performance by Titanium-Coated Anode Gas Diffusion Layer. Int. J. Hydrogen Energy 2014, 39, 21177–21184. [Google Scholar] [CrossRef]
- Su, H.; Xu, L.; Zhu, H.; Wu, Y.; Yang, L.; Liao, S.; Song, H.; Liang, Z.; Birss, V. Self-Humidification of a PEM Fuel Cell Using a Novel Pt/SiO2/C Anode Catalyst. Int. J. Hydrogen Energy 2010, 35, 7874–7880. [Google Scholar] [CrossRef]
- Le, T.M.H.; Chuchak, R.; Sairiam, S. Empowering TiO2–Coated PVDF Membranes Stability with Polyaniline and Polydopamine for Synergistic Separation and Photocatalytic Enhancement in Dye Wastewater Purification. Sci. Rep. 2024, 14, 15969. [Google Scholar] [CrossRef]
- Su, J.; Zou, X.; Chen, J.-S. Self-Modification of Titanium Dioxide Materials by Ti3+ and/or Oxygen Vacancies: New Insights into Defect Chemistry of Metal Oxides. SC Adv. 2014, 4, 13979–13988. [Google Scholar] [CrossRef]
- Pham, H.H.; Wang, L.W. Oxygen Vacancy and Hole Conduction in Amorphous TiO2. Phys. Chem. Chem. Phys. 2015, 17, 541–550. [Google Scholar] [CrossRef]
- Elahifard, M.; Sadrian, M.R.; Mirzanejad, A.; Behjatmanesh-Ardakani, R.; Ahmadvand, S. Dispersion of Defects in TiO2 Semiconductor: Oxygen Vacancies in the Bulk and Surface of Rutile and Anatase. Catalysts 2020, 10, 397. [Google Scholar] [CrossRef]
- Nadeem, I.M.; Harrison, G.T.; Wilson, A.; Pang, C.L.; Zegenhagen, J.; Thornton, G. Bridging Hydroxyls on Anatase TiO2(101) by Water Dissociation in Oxygen Vacancies. J. Phys. Chem. B 2018, 122, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, Y.; Jin, Y.; Liu, H.; Ma, Q.; Xu, Q.; Su, H. TiO2 Nanolayer Coated Carbon Support for Highly Durable High-Temperature Polymer Electrolyte Membrane Fuel Cell Cathode. Int. J. Hydrogen Energy 2024, 65, 829–836. [Google Scholar] [CrossRef]
- Parsons, G.N.; George, S.M.; Knez, M. Progress and Future Directions for Atomic Layer Deposition and ALD-Based Chemistry. MRS Bull. 2011, 36, 865–871. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.C. New Development of Atomic Layer Deposition: Processes, Methods and Applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Poddighe, M.; Innocenzi, P. Hydrophobic Thin Films from Sol–Gel Processing: A Critical Review. Materials 2021, 14, 6799. [Google Scholar] [CrossRef]
- Pandey, S.; Mishra, S.B. Sol-Gel Derived Organic-Inorganic Hybrid Materials: Synthesis, Characterizations and Applications. J. Sol-Gel Sci. Technol. 2011, 59, 73–94. [Google Scholar] [CrossRef]
- Rafieian, D.; Ogieglo, W.; Savenije, T.; Lammertink, R.G.H. Controlled Formation of Anatase and Rutile TiO2 Thin Films by Reactive Magnetron Sputtering. AIP Adv. 2015, 5, 097168. [Google Scholar] [CrossRef]
- Simionescu, O.G.; Romanitan, C.; Tutunaru, O.; Ion, V.; Buiu, O.; Avram, A. RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate. Coatings 2019, 9, 442. [Google Scholar] [CrossRef]
- McNeary, W.W.; Linico, A.E.; Ngo, C.; van Rooij, S.; Haussener, S.; Maguire, M.E.; Pylypenko, S.; Weimer, A.W. Atomic Layer Deposition of TiO2 for Stabilization of Pt Nanoparticle Oxygen Reduction Reaction Catalysts. J. Appl. Electrochem. 2018, 48, 973–984. [Google Scholar] [CrossRef]
- Kitahara, T.; Nakajima, H.; Inamoto, M.; Morishita, M. Novel Hydrophilic and Hydrophobic Double Microporous Layer Coated Gas Diffusion Layer to Enhance Performance of Polymer Electrolyte Fuel Cells under Both Low and High Humidity. J. Power Sources 2013, 234, 129–138. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Liu, H.; Xu, Q.; Khotseng, L.; Cheng, Y.; Su, H. Cultivating Titanium Dioxide Nanoarrays on Gas Diffusion Layer for Advancing Self-Humidifying Proton Exchange Membrane Fuel Cell. Fuel 2024, 366, 131322. [Google Scholar] [CrossRef]
- Mirshekari, G.R.; Shirvanian, A.P. Electrochemical Behavior of Titanium Oxide Nanoparticles for Oxygen Reduction Reaction Environment in PEM Fuel Cells. Mater. Today Energy 2018, 9, 235–239. [Google Scholar] [CrossRef]
- Choun, M.; Chung, S.; Jeon, H.; Uhm, S.; Lee, J. Atomic-Layer-Deposited TiO2 on Cathode Gas Diffusion Layer for Low Humidity Operation in Hydrogen Fuel Cells. Electrochem. Commun. 2012, 24, 108–111. [Google Scholar] [CrossRef]
- Ng, S.; Sopha, H.; Zazpe, R.; Spotz, Z.; Bijalwan, V.; Dvorak, F.; Hromadko, L.; Prikryl, J.; Macak, J.M. TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing. Front. Chem. 2019, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Saini, C.P.; Barman, A.; Das, D.; Satpati, B.; Bhattacharyya, S.R.; Kanjilal, D.; Ponomaryov, A.; Zvyagin, S.; Kanjilal, A. Role of Oxygen Vacancy on the Hydrophobic Behavior of TiO2 Nanorods on Chemically Etched Si Pyramids. J. Phys. Chem. C 2017, 121, 278–283. [Google Scholar] [CrossRef]
- Arenas-Hernandez, A.; Zuñiga Islas, C.; Moreno, M.; Calleja Arriaga, W.; Mendoza-Cervantes, J.C.; Carlos, N.; Ascencio-Hurtado, C.R.; Heredia Jiménez, A. Study of Oxygen Vacancies in TiO2 Nanostructures and Their Relationship with Photocatalytic Activity. Appl. Sci. 2022, 12, 3690. [Google Scholar] [CrossRef]
- Sarkar, A.; Khan, G.G. The Formation and Detection Techniques of Oxygen Vacancies in Titanium Oxide-Based Nanostructures. Nanoscale 2019, 11, 3414–3444. [Google Scholar] [CrossRef]
- Pan, X.; Yang, M.Q.; Fu, X.; Zhang, N.; Xu, Y.J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Reis, F.D.A.A.; Mallio, D.O.; Galindo, J.L.; Huertas, R. Scaling of Roughness and Porosity in Thin Film Deposition with Mixed Transport Mechanisms and Adsorption Barriers. Phys. Rev. E 2020, 102, 042802. [Google Scholar] [CrossRef] [PubMed]
- Sievers, G.; Vidakovic-Koch, T.; Walter, C.; Steffen, F.; Jakubith, S.; Kruth, A.; Hermsdorf, D.; Sundmacher, K.; Brüser, V. Ultra-Low Loading Pt-Sputtered Gas Diffusion Electrodes for Oxygen Reduction Reaction. J. Appl. Electrochem. 2018, 48, 221–232. [Google Scholar] [CrossRef]
- Hou, S.; Ye, Y.; Liao, S.; Ren, J.; Wang, H.; Yang, P.; Du, K.; Li, J.; Peng, H. Enhanced Low-Humidity Performance in a Proton Exchange Membrane Fuel Cell by Developing a Novel Hydrophilic Gas Diffusion Layer. Int. J. Hydrogen Energy 2020, 45, 937–944. [Google Scholar] [CrossRef]
- Mohamed Zahidi, M.; Mamat, M.H.; Malek, M.F.; Yaakob, M.K.; Ahmad, M.K.; Abu Bakar, S.; Mohamed, A.; Subki, A.S.R.; Mahmood, M.R. Evaluating Different TiO2 Nanoflower-Based Composites for Humidity Detection. Sensors 2022, 22, 5794. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, L.; Zeng, Y.; Guo, X.; Shao, Z.; Yi, B. Investigation of Water Transport in Fuel Cells Using Water Transport Plates and Solid Plates. RSC Adv. 2018, 8, 1503–1510. [Google Scholar] [CrossRef]
Element | Mass Norm. [%] | Atomic [%] | Error [%] |
---|---|---|---|
C | 1.23 | 3.43 | 0.46 |
O | 23.56 | 49.50 | 4.57 |
Si | 2.93 | 3.51 | 0.28 |
Ti | 58.74 | 41.23 | 2.78 |
Pt | 13.54 | 2.33 | 0.74 |
100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, B.G.; Kwon, Y.R.; Hong, K.W.; Kwon, S.K.; Lee, H.M.; Song, D.K.; Jeon, J.W.; Jung, D.Y.; Go, D.; Cho, G.Y. Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions. Energies 2025, 18, 1525. https://doi.org/10.3390/en18061525
Kang BG, Kwon YR, Hong KW, Kwon SK, Lee HM, Song DK, Jeon JW, Jung DY, Go D, Cho GY. Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions. Energies. 2025; 18(6):1525. https://doi.org/10.3390/en18061525
Chicago/Turabian StyleKang, Byung Gyu, Ye Rim Kwon, Ki Won Hong, Sun Ki Kwon, Hyeon Min Lee, Dong Kun Song, Ji Woong Jeon, Do Young Jung, Dohyun Go, and Gu Young Cho. 2025. "Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions" Energies 18, no. 6: 1525. https://doi.org/10.3390/en18061525
APA StyleKang, B. G., Kwon, Y. R., Hong, K. W., Kwon, S. K., Lee, H. M., Song, D. K., Jeon, J. W., Jung, D. Y., Go, D., & Cho, G. Y. (2025). Performance Improvement of Proton Exchange Membrane Fuel Cells with a TiO2 Sputtered Gas Diffusion Layer Under Low-Humidity Conditions. Energies, 18(6), 1525. https://doi.org/10.3390/en18061525