HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests
Abstract
:1. Introduction
Aims, Objectives, and Innovative Aspects
- Assess the impact of different operation and configuration scenarios for the existing HVAC system (covering partial or full outdoor air supply, with or without the use of demand control ventilation) on the energy consumption of the system;
- Apply a comprehensive methodological framework that couples dynamic energy simulation, multi-objective optimization (MOO), and multi-criteria decision-making (MCDM) techniques in order to explore a wide range of retrofit solutions addressing several Key Performance Indicators representing energy consumption, environmental impact, thermal comfort, and economic viability;
- Evaluate multiple stakeholder perspectives by capturing varying priorities (i.e., public vs. private interest);
- Use multiple MCDM methods and the ensemble ranking approach proposed by Mohammadi and Rezaei to provide a robust ranking of potential retrofit alternatives;
- Recommend best compromise retrofit solutions that effectively reduce airborne infection risk while balancing energy and economic considerations.
2. Methodology
- Annual CO2-eq emissions [kgCO2-eq];
- Annual thermal discomfort hours [h];
- Investment cost [EUR].
3. Case Study and Proposed Energy Retrofit Solutions
- Scenario A0: operation of the system with 60% outdoor air + HEPA (High-Efficiency Particulate Air) filter in the recirculation duct;
- Scenario A: operation of the system with 60% outdoor air + HEPA filter + installation of inverter devices on the fans for airflow modulation + replacement of existing manual control dampers with automatic dampers.
- Scenario B0: operation of the system with 100% outdoor air;
- Scenario B: operation of the system with 100% outdoor air + installation of inverter devices on the fans for airflow modulation + replacement of manual control dampers with automatic ones.
4. Results and Discussion
5. Conclusions
- To reduce the risk of COVID infection, baseline retrofit scenarios (A0, i.e., operation of the system with 60% outdoor air + HEPA filter in the recirculation duct; B0, i.e., operation of the system with 100% outdoor air) cause energy consumption increases from negligible values up to 59% compared to the existing HVAC system outline;
- Baseline retrofit scenarios for infection reduction also involve the installation of inverters and automatic dampers for demand control ventilation (A and B), causing energy savings between 5% and 38%;
- In the case of scenario A (operation of the HVAC system with 60% outdoor air + HEPA filter + inverter and automatic dampers), for the implementation of deep retrofit intervention solutions (the replacement of the artificial lighting system, the skylight with its solar shading and the heat generators) the following can be said:
- ○
- There is no agreement between the two decision makers (private and public) on the preferable retrofit solution;
- ○
- The best solution for the private decision maker leads to a 43% reduction in CO2 emissions with a 3% increase in the hours of thermal discomfort;
- ○
- The best solution for the public decision maker provides a 39% reduction in CO2 emissions while maintaining the hours of discomfort unaltered.
- In the case of scenario B (operation of the system with 100% outdoor air + inverter and automatic dampers), for the implementation of deep retrofit intervention solutions, the following can be said:
- ○
- The best deep retrofit solution is the same for both public and private decision makers;
- ○
- The best solution for both decision makers provides a 42% reduction in CO2 emissions and an 11% increase in discomfort hours.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Ali, A.; D’Angola, A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability 2024, 16, 1749. [Google Scholar] [CrossRef]
- Mokhberi, P.; Mokhberi, P.; Izadi, M.; Nesaii, M.B.; Yaici, W.; Minelli, F. Thermal Regulation Enhancement in Multi-Story Office Buildings: Integrating Phase Change Materials into Inter-Floor Void Formers. Case Stud. Therm. Eng. 2024, 60, 104792. [Google Scholar] [CrossRef]
- Izadi, M.; Afsharpanah, F.; Mohadjer, A.; Shobi, M.O.; Ajarostaghi, S.S.M.; Minelli, F. Performance Enhancement of a Shell-and-Coil Ice Storage Enclosure for Air Conditioning Using Spiral Longitudinal Fins: A Numerical Approach. Heliyon 2025, 11, e42786. [Google Scholar] [CrossRef]
- Borzea, C.; Vlǎducǎ, I.; Ionescu, D.; Petrescu, V.; Niculescu, F.; Nechifor, C.; Vǎtǎşelu, G.; Hanek, M. Compressed Air Energy Storage Installation for Renewable Energy Generation. E3S Web Conf. 2019, 112, 02010. [Google Scholar] [CrossRef]
- Mohammed, B.U.; Wiysahnyuy, Y.S.; Ashraf, N.; Mempouo, B.; Mengata, G.M. Pathways for Efficient Transition into Net Zero Energy Buildings (NZEB) in Sub-Sahara Africa. Case Study: Cameroon, Senegal, and Côte d’Ivoire. Energy Build 2023, 296, 113422. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Shaikh, A.M.; Shaikh, M.F.; Jiskani, S.A.; Memon, Q.A. Technical and Economical Evaluation of Solar PV System for Domestic Load in Pakistan: An Overlook Contributor to High Tariff and Load Shedding. Sir Syed Univ. Res. J. Eng. Technol. 2022, 12, 23–30. [Google Scholar] [CrossRef]
- Shi, S.; Song, Y.; Chu, Y.; He, Y. Comprehensive Energy Efficiency Study of Different Climate-Adapted BIPV Roof Forms in Single-Family Houses for Five Climate Zones of China Based on PV Energy Substitution Rates (PVESR). IOP Conf. Ser. Earth Environ. Sci. 2022, 1074, 012005. [Google Scholar] [CrossRef]
- Shaikh, S.; Katyara, S.; Majeed, A.; Khand, Z.H.; Staszewski, L.; Shah, M.; Shaikh, M.F.; Bhan, V.; Memon, Q.; Majeed, U.; et al. Holistic and Scientific Perspectives of Energy Sector in Pakistan: Progression, Challenges and Opportunities. IEEE Access 2020, 8, 227232–227246. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Tronchin, L.; Groppi, D.; Garcia, D.A. Techno-Economic Analysis and Energy Modelling as a Key Enablers for Smart Energy Services and Technologies in Buildings. Renew. Sustain. Energy Rev. 2021, 150, 111490. [Google Scholar] [CrossRef]
- Maduabuchi, C.; Nsude, C.; Eneh, C.; Eke, E.; Okoli, K.; Okpara, E.; Idogho, C.; Waya, B.; Harsito, C. Renewable Energy Potential Estimation Using Climatic-Weather-Forecasting Machine Learning Algorithms. Energies 2023, 16, 1603. [Google Scholar] [CrossRef]
- Maity, R.; Mathew, M.; Hossain, J. Increase in Power Production of Rooftop Solar Photovoltaic System Using Tracking. In Proceedings of the 2018 International Conference on Power Energy, Environment and Intelligent Control, PEEIC 2018, Greater Noida, India, 13–14 April 2018; pp. 415–419. [Google Scholar] [CrossRef]
- Maity, R.; Shuhaimi, M.K.I.b.A.; Sudhakar, K.; Razak, A.A. Forestvoltaics, Floatovoltaics and Building Applied Photovoltaics (BAPV) Potential for a University Campus. Energy Eng. 2024, 121, 2331–2361. [Google Scholar] [CrossRef]
- Rai, R.; Jamali, S.; Ahmed, K.; Zaidi, A.A.; Ali, M.; Memon, A.H. Development of a Small Scale Photovoltaic Thermal Hybrid (PV/T) System for Domestic Applications in Pakistan. Clean Energy Technol. J. 2023, 1, 60–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lam, K.P. Whole Building Energy Model for HVAC Optimal Control: A Practical Framework Based on Deep Reinforcement Learning. Energy Build. 2019, 199, 472–490. [Google Scholar] [CrossRef]
- Zivelonghi, A.; Lai, M. Mitigating Aerosol Infection Risk in School Buildings: The Role of Natural Ventilation, Volume, Occupancy and CO2 Monitoring. Build. Environ. 2021, 204, 108139. [Google Scholar] [CrossRef]
- Sodiq, A.; Khan, M.A.; Naas, M.; Amhamed, A. Addressing COVID-19 Contagion through the HVAC Systems by Reviewing Indoor Airborne Nature of Infectious Microbes: Will an Innovative Air Recirculation Concept Provide a Practical Solution? Environ. Res. 2021, 199, 111329. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications. Environ. Int. 2020, 145, 106112. [Google Scholar] [CrossRef]
- Elsaid, A.M.; Mohamed, H.A.; Abdelaziz, G.B.; Ahmed, M.S. A Critical Review of Heating, Ventilation, and Air Conditioning (HVAC) Systems within the Context of a Global SARS-CoV-2 Epidemic. Process Saf. Environ. Prot. 2021, 155, 230–261. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, D.; Minelli, F.; Minichiello, F.; Musella, M. Improving the Indoor Air Quality of Office Buildings in the Post-Pandemic Era—Impact on Energy Consumption and Costs. Energies 2024, 17, 855. [Google Scholar] [CrossRef]
- Coban, H.H. How Is COVID-19 Affecting the Renewable Energy Sector and the Electric Power Grid? Eur. J. Sci. Technol. 2021, 27, 484–494. [Google Scholar] [CrossRef]
- D’Alicandro, A.C.; Mauro, A. Experimental and Numerical Analysis of CO2 Transport inside a University Classroom: Effects of Turbulent Models. J. Build. Perform. Simul. 2023, 16, 434–459. [Google Scholar] [CrossRef]
- D’Alicandro, A.C.; Massarotti, N.; Mauro, A. Aerosol Hazards in Operating Rooms: A Review of Numerical and Experimental Studies. J. Aerosol Sci. 2021, 158, 105823. [Google Scholar] [CrossRef]
- D’Alicandro, A.C.; Capozzoli, A.; Mauro, A. Thermofluid Dynamics and Droplets Transport inside a Large University Classroom: Effects of Occupancy Rate and Volumetric Airflow. J. Aerosol Sci. 2024, 175, 106285. [Google Scholar] [CrossRef]
- Arpino, F.; Cortellessa, G.; D’Alicandro, A.C.; Grossi, G.; Massarotti, N.; Mauro, A. CFD Analysis of the Air Supply Rate Influence on the Aerosol Dispersion in a University Lecture Room. Build. Environ. 2023, 235, 110257. [Google Scholar] [CrossRef]
- D’Alicandro, A.C.; Mauro, A. Air Change per Hour and Inlet Area: Effects on Ultrafine Particle Concentration and Thermal Comfort in an Operating Room. J. Aerosol Sci. 2023, 171, 106183. [Google Scholar] [CrossRef]
- D’Agostino, D.; Di Mascolo, M.; Minelli, F.; Minichiello, F. A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era. Energies 2024, 17, 2769. [Google Scholar] [CrossRef]
- Hashempour, N.; Taherkhani, R.; Mahdikhani, M. Energy Performance Optimization of Existing Buildings: A Literature Review. Sustain. Cities Soc. 2020, 54, 101967. [Google Scholar] [CrossRef]
- Zhan, J.; He, W.; Huang, J. Dual-Objective Building Retrofit Optimization under Competing Priorities Using Artificial Neural Network. J. Build. Eng. 2023, 70, 106376. [Google Scholar] [CrossRef]
- Krajčík, M.; Arıcı, M.; Ma, Z. Trends in Research of Heating, Ventilation and Air Conditioning and Hot Water Systems in Building Retrofits: Integration of Review Studies. J. Build. Eng. 2023, 76, 107426. [Google Scholar] [CrossRef]
- Michailidis, I.T.; Schild, T.; Sangi, R.; Michailidis, P.; Korkas, C.; Fütterer, J.; Müller, D.; Kosmatopoulos, E.B. Energy-Efficient HVAC Management Using Cooperative, Self-Trained, Control Agents: A Real-Life German Building Case Study. Appl. Energy 2018, 211, 113–125. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Vamvakas, D.; Kosmatopoulos, E. Model-Free HVAC Control in Buildings: A Review. Energies 2023, 16, 7124. [Google Scholar] [CrossRef]
- Michailidis, I.T.; Sangi, R.; Michailidis, P.; Schild, T.; Fuetterer, J.; Mueller, D.; Kosmatopoulos, E.B. Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study. Energies 2020, 13, 6228. [Google Scholar] [CrossRef]
- Hamdy, M.; Hasan, A.; Siren, K. Applying a Multi-Objective Optimization Approach for Design of Low-Emission Cost-Effective Dwellings. Build. Environ. 2011, 46, 109–123. [Google Scholar] [CrossRef]
- Sassone, A.; Ahmed, S.; D’Angola, A. A Profit Optimization Model for Renewable Energy Communities Based on the Distribution of Participants. In Proceedings of the 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Rome, Italy, 17–20 June 2024; pp. 1–6. [Google Scholar]
- Shi, S.; Zhu, N. Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review. Sustainability 2023, 15, 15876. [Google Scholar] [CrossRef]
- Elmalky, A.M.; Araji, M.T. Multi-Objective Problem of Optimizing Heat Transfer and Energy Production in Algal Bioreactive Façades. Energy 2023, 268, 126650. [Google Scholar] [CrossRef]
- Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds. Machines 2022, 10, 785. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Li, G.; Wang, X.; Ma, J.; Xu, C.; Mao, Q. A Systematic Review and Comprehensive Analysis of Building Occupancy Prediction. Renew. Sustain. Energy Rev. 2024, 193, 114284. [Google Scholar] [CrossRef]
- Elmalky, A.M.; Araji, M.T. Pareto Optimization for Enhanced Building Energy Efficiency and Bioenergy Generation. In Proceedings of the 4th International Conference on Smart Grid and Renewable Energy, SGRE, Doha, Qatar, 8–10 January 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Barakat, S.; Ibrahim, H.; Elbaset, A.A. Multi-Objective Optimization of Grid-Connected PV-Wind Hybrid System Considering Reliability, Cost, and Environmental Aspects. Sustain. Cities Soc. 2020, 60, 102178. [Google Scholar] [CrossRef]
- Li, X.; Malkawi, A. Multi-Objective Optimization for Thermal Mass Model Predictive Control in Small and Medium Size Commercial Buildings under Summer Weather Conditions. Energy 2016, 112, 1194–1206. [Google Scholar] [CrossRef]
- Gu, B.; Mao, C.; Wang, D.; Liu, B.; Fan, H.; Fang, R.; Sang, Z. A Data-Driven Stochastic Energy Sharing Optimization and Implementation for Community Energy Storage and PV Prosumers. Sustain. Energy Grids Netw. 2023, 34, 101051. [Google Scholar] [CrossRef]
- Coban, H.H.; Sauhats, A. Optimization Tool for Small Hydropower Plant Resource Planning and Development: A Case Study. J. Adv. Res. Nat. Appl. Sci. 2022, 8, 391–428. [Google Scholar] [CrossRef]
- Katyara, S.; Shaikh, M.F.; Shaikh, S.; Khand, Z.H.; Staszewski, L.; Bhan, V.; Majeed, A.; Shah, M.A.; Zbigniew, L. Leveraging a Genetic Algorithm for the Optimal Placement of Distributed Generation and the Need for Energy Management Strategies Using a Fuzzy Inference System. Electronics 2021, 10, 172. [Google Scholar] [CrossRef]
- Ferreira, W.M.; Meneghini, I.R.; Brandao, D.I.; Guimarães, F.G. Preference Cone Based Multi-Objective Evolutionary Algorithm Applied to Optimal Management of Distributed Energy Resources in Microgrids. Appl. Energy 2020, 274, 115326. [Google Scholar] [CrossRef]
- Afsharpanah, F.; Pakzad, K.; Mousavi Ajarostaghi, S.S.; Arıcı, M. Assessment of the Charging Performance in a Cold Thermal Energy Storage Container with Two Rows of Serpentine Tubes and Extended Surfaces. J. Energy Storage 2022, 51, 104464. [Google Scholar] [CrossRef]
- Afsharpanah, F.; Mousavi Ajarostaghi, S.S.; Arıcı, M. Parametric Study of Phase Change Time Reduction in a Shell-and-Tube Ice Storage System with Anchor-Type Fin Design. Int. Commun. Heat Mass Transf. 2022, 137, 106281. [Google Scholar] [CrossRef]
- Lazaridis, C.R.; Michailidis, I.; Karatzinis, G.; Michailidis, P.; Kosmatopoulos, E. Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management. Energies 2024, 17, 581. [Google Scholar] [CrossRef]
- Michailidis, P.; Michailidis, I.; Gkelios, S.; Kosmatopoulos, E. Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions. Energies 2024, 17, 570. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Dahooie, J.H.; Kashan, A.H.; Naeini, Z.S.; Vanaki, A.S.; Zavadskas, E.K.; Turskis, Z. A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran. Energies 2022, 15, 2801. [Google Scholar] [CrossRef]
- D’Agostino, D.; D’Auria, M.; Minelli, F.; Minichiello, F. Multi-Criteria Decision-Making for Thermal Insulation of an Existing Office Building Considering Environmental, Energy, and Economic Performance. In Sustainability in Energy and Buildings 2023, Proceedings of the Sustainability in Energy and Buildings 2023, Bari, Italy, 18–20 September 2023; Littlewood, J.R., Jain, L., Howlett, R.J., Eds.; Smart Innovation, Systems and Technologies; Springer Nature: Singapore, 2024; Volume 378, pp. 167–177. [Google Scholar]
- D’Agostino, D.; De Falco, F.; Minelli, F.; Minichiello, F. New Robust Multi-Criteria Decision-Making Framework for Thermal Insulation of Buildings under Conflicting Stakeholder Interests. Appl. Energy 2024, 376, 124262. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Ginevičius, R. Robustness in Regional Development Studies. The Case of Lithuania. J. Bus. Econ. Manag. 2009, 10, 121–140. [Google Scholar] [CrossRef]
- Yoon, K. A Reconciliation among Discrete Compromise Solutions. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Wei, J.; Lin, X. The Multiple Attribute Decision-Making VIKOR Method and Its Application. In Proceedings of the 2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM, Dalian, China, 12–14 October 2008; pp. 23–26. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of Weighted Aggregated Sum Product Assessment. Elektron. Elektrotechnika 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. Robustness of MULTIMOORA: A Method for Multi-Objective Optimization. Informatica 2012, 23, 1–25. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rezaei, J. Ensemble Ranking: Aggregation of Rankings Produced by Different Multi-Criteria Decision-Making Methods. Omega 2020, 96, 102254. [Google Scholar] [CrossRef]
- Aziz, N.F.; Sorooshian, S.; Mahmud, F. MCDM-AHP Method in Decision Makings. ARPN J. Eng. Appl. Sci. 2016, 11, 7217–7220. [Google Scholar]
- DesignBuilder. DesignBuilder Software, v.6.2.3; DesignBuilder Software Ltd.: Stroud, UK, 2019.
- EnergyPlus. Input Output Reference. In The Encyclopedic Reference to EnergyPlus Input and Output; U.S. Department of Energy: Washington, DC, USA, 2010. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia, 1998. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project Management by Multimoora as an Instrument for Transition Economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Pastore, L.M.; Groppi, D.; Feijoo, F.; Lo Basso, G.; Astiaso Garcia, D.; de Santoli, L. Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-Term Energy Transition to Achieve Zero Emission by 2050. Appl. Energy 2024, 367, 123358. [Google Scholar] [CrossRef]
Intensity of Importance | Definition | Description |
---|---|---|
1 | Equal importance | Two criteria contribute equally |
3 | Moderate importance of one over another | Moderate preference of the first criterion compared to the other one |
5 | Essential or strong importance | Strong preference of the first criterion compared to the other one |
7 | Very strong importance | Very strong preference of the first criterion compared to the other one |
9 | Extreme importance | The preference of the first criterion compared to the other one is the highest possible |
2, 4, 6, 8 | Intermediate values between the two adjacent judgements | When compromise is needed |
Reciprocals | When to a criterion “a” it is assigned one of the above reported judgements when related to a second criterion “b”, then to the second criterion “b” it is assigned the reciprocal value when related to the first criterion “a”. |
Iteration | Variables | KPIs | PMV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cooling Setpoint | Heating Setpoint | ArtificialLighting | Lighting Power Density | Shading Type | Roof Glazing Type | Thermal Mass | EER | COP | CO2-eq Emissions | Discomfort | Cost | Summer PMV | Winter PMV | |
[°C] | [°C] | [W/m2] | [-] | [-] | [-] | [-] | [kg/year] | [h] | [€] | [-] | [-] | |||
3 | 25.8 | 19.2 | LED | 4.5 | 0.2 m louvres | Triple–Low Emission-Air | Heavyweight | 3.4 | 5.0 | 9566 | 1217 | 27,788 | 0.9 | 0.9 |
8 | 26.2 | 19.0 | LED | 4.5 | 0.6 m louvres | Triple–Low Emission-Argon | Heavyweight | 3.8 | 3.4 | 9693 | 1193 | 29,590 | 0.3 | −0.6 |
34 | 25.0 | 19.2 | Dimmable LED | 2.5 | 0.2 m louvres | Triple–Low Emission-Air | Lightweight | 3.8 | 4.2 | 8945 | 1259 | 27,990 | 0.9 | −1.0 |
40 | 26.2 | 19.4 | Dimmable LED | 3.0 | 0.6 m louvres | Triple–Low Emission-Kripton | Lightweight | 5.0 | 5.0 | 9145 | 1238 | 34,297 | −0.4 | −0.7 |
47 | 27.0 | 19.0 | Dimmable LED | 4.0 | 0.6 m louvres | Triple–Low Emission-Argon | Heavyweight | 3.8 | 4.2 | 9039 | 1243 | 29,792 | 0.2 | −0.6 |
59 | 25.0 | 20.2 | LED | 3.5 | 0.4 m louvres + sidefins | Electronically tintable glazing | Heavyweight | 5.0 | 3.8 | 15771 | 1132 | 25,825 | −0.6 | 0.3 |
77 | 26.2 | 20.6 | LED | 5.0 | 0.4 m louvres | Triple–Low Emission-Argon | Lightweight | 5.0 | 3.4 | 9595 | 1210 | 29,140 | 0.6 | 0.5 |
82 | 27.0 | 19.4 | Dimmable LED | 3.5 | 0.2 m louvres | Electronically tintable glazing | Heavyweight | 3.4 | 4.6 | 8850 | 1283 | 46,736 | −0.9 | −0.5 |
85 | 26.2 | 19.0 | LED | 4.0 | 0.4 m louvres + sidefins | Triple–Argon | Medium weight | 5.0 | 4.6 | 9489 | 1236 | 49,687 | 0.4 | −0.4 |
147 | 25.0 | 21.0 | Dimmable LED | 3.5 | 0.2 m louvres + sidefins | Triple–Argon | Medium weight | 3.8 | 5.0 | 8888 | 1271 | 36,018 | −0.7 | 0.2 |
260 | 26.6 | 19.4 | LED | 3.5 | 0.4 m louvres | Triple–Low Emission-Kripton | Heavyweight | 4.6 | 3.4 | 9833 | 1189 | 34,095 | 0.8 | 0.6 |
264 | 26.8 | 19.4 | Dimmable LED | 4.5 | 0.2 m louvres | Triple–Low Emission-Argon | Heavyweight | 3.8 | 5.0 | 8967 | 1243 | 48,538 | −0.8 | 0.1 |
Iteration | Variables | KPIs | PMV | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cooling Setpoint | Heating Setpoint | ArtificialLighting | Lighting Power Density | Shading Type | Roof Glazing Type | Thermal Mass | EER | COP | CO2-eq Emissions | Discomfort | Cost | Summer PMV | Winter PMV | |
[°C] | [°C] | [-] | [W/m2] | [-] | [-] | [-] | [-] | [-] | [kg/year] | [h] | [€] | [-] | [-] | |
6 | 26.6 | 20.0 | Dimmable LED | 4.0 | 0.2 m louvres + sidefins | Triple–Low Emission-Argon | Lightweight | 4.2 | 3.4 | 9499 | 1374 | 23,600 | 0.0 | −1.0 |
30 | 25.8 | 20.6 | LED | 4.5 | 0.4 m louvres + sidefins | Triple–Low Emission-Argon | Medium weight | 4.2 | 3.4 | 16317 | 1210 | 49,977 | 0.6 | 0.5 |
35 | 25.2 | 20.6 | Dimmable LED | 2.5 | 0.4 m louvres + sidefins | Triple–Argon | Heavyweight | 4.6 | 4.2 | 9416 | 1387 | 30,244 | 0.5 | −0.4 |
47 | 25.2 | 19.4 | LED | 4.0 | 0.6 m louvres | Triple–Low Emission-Argon | Medium weight | 5 | 3.4 | 10130 | 1323 | 49,237 | −0.3 | 0.5 |
57 | 25.0 | 19.0 | LED | 5.0 | 0.4 m louvres | Triple–Argon | Heavyweight | 5 | 3.8 | 10020 | 1340 | 28,689 | 0.1 | −0.3 |
73 | 26.6 | 20.4 | LED | 2.0 | 0.6 m louvres | Triple–Low Emission-Argon | Lightweight | 5 | 3.8 | 13328 | 1277 | 29,469 | 0.8 | −0.6 |
95 | 26.2 | 19.2 | LED | 3.5 | 0.4 m louvres | Electronically tintable glazing | Medium weight | 4.2 | 3.8 | 9970 | 1357 | 27,337 | 0.5 | −0.2 |
135 | 25.4 | 19.8 | Dimmable LED | 2.5 | 0.2 m louvres + sidefins | Electronically tintable glazing | Heavyweight | 3.4 | 5 | 9377 | 1413 | 28,441 | −0.8 | 1.0 |
660 | 25.4 | 19.0 | LED | 4.5 | 0.2 m louvres | Triple–Low Emission-Air | Medium weight | 3.8 | 4.2 | 16317 | 1232 | 47,274 | 0.6 | 0.4 |
Iteration | DM1–Collectivity | DM2-Private | ||
---|---|---|---|---|
Rank | D | Rank | D | |
3 | 3 | 2 | 1 | −2 |
8 | 6 | 1 | 5 | −1 |
34 | 1 | −2 | 3 | 2 |
40 | 5 | −4 | 8 | 4 |
47 | 2 | −5 | 6 | 5 |
59 | 12 | 10 | 2 | −10 |
77 | 4 | 0 | 4 | 0 |
82 | 7 | −2 | 9 | 2 |
85 | 11 | −1 | 12 | 1 |
147 | 10 | −2 | 11 | 2 |
260 | 9 | 2 | 7 | −2 |
264 | 8 | −2 | 10 | 2 |
Iteration | DM1–Collectivity | DM2-Private | ||
---|---|---|---|---|
Rank | D | Rank | D | |
6 | 1 | 0 | 1 | 0 |
30 | 8 | −1 | 9 | 1 |
35 | 2 | −4 | 6 | 4 |
47 | 6 | −2 | 8 | 2 |
57 | 5 | 2 | 3 | −2 |
73 | 7 | 2 | 5 | −2 |
95 | 4 | 2 | 2 | −2 |
135 | 3 | −1 | 4 | 1 |
660 | 9 | 2 | 7 | −2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, D.; Minelli, F.; Minichiello, F. HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests. Energies 2025, 18, 1526. https://doi.org/10.3390/en18061526
D’Agostino D, Minelli F, Minichiello F. HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests. Energies. 2025; 18(6):1526. https://doi.org/10.3390/en18061526
Chicago/Turabian StyleD’Agostino, Diana, Federico Minelli, and Francesco Minichiello. 2025. "HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests" Energies 18, no. 6: 1526. https://doi.org/10.3390/en18061526
APA StyleD’Agostino, D., Minelli, F., & Minichiello, F. (2025). HVAC System Energy Retrofit for a University Lecture Room Considering Private and Public Interests. Energies, 18(6), 1526. https://doi.org/10.3390/en18061526