Enhancing Renewable Energy Integration and Implementing EV Charging Stations for Sustainable Electricity in Crete’s Supermarket Chain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimation of Hourly Consumption
2.2. EV Charger Integration
2.3. Energy System Simulation
2.4. Metaheuristic Algorithm
3. Results
3.1. Final Load Estimations
3.2. Optimisation Results
- Processor: AMD Ryzen 5 4600H with Radeon Graphics, 3.00 GHz (6 cores, 12 threads)
- Installed RAM: 8.00 GB (7.37 GB usable)
- Operating System: Windows 10, 64-bit operating system, x64-based processor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Musiał, W.; Zioło, M.; Luty, L.; Musial, K. Energy Policy of European Union Member States in the Context of Renewable Energy Sources Development. Energies 2021, 14, 2864. [Google Scholar] [CrossRef]
- Potrč, S.; Čuček, L.; Martín, M.; Kravanja, Z. Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050. Renew. Sustain. Energy Rev. 2021, 146, 111186. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- Deshmukh, S.; Pearce, J. Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renew. Energy 2021, 169, 608–617. [Google Scholar] [CrossRef]
- Huang, Y.; Yona, A.; Takahashi, H.; Hemeida, A.; Mandal, P.; Mikhaylov, A.; Senjyu, T.; Lotfy, M. Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation. Sustainability 2021, 13, 6163. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Mamun, A.A.; Ansari, S.; Miah, M.S.; Hasan, K.; Meraj, S.T.; Abdolrasol, M.G.M.; Rahman, T.; Maruf, M.H.; Sarker, M.R. Battery Management, Key Technologies, Methods, Issues, and Future Trends of Electric Vehicles: A Pathway toward Achieving Sustainable Development Goals. Batteries 2022, 8, 119. [Google Scholar] [CrossRef]
- Adeyinka, A.M.; Esan, O.C.; Ijaola, A.O.; Farayibi, P.K. Advancements in hybrid energy storage systems for enhancing renewable energy-to-grid integration. Sustain. Energy Res. 2024, 11, 26. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of lithium-ion batteries in grid-scale energy storage systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Hill, C.; Such, M.; Chen, D.; Gonzalez, J.; Grady, W. Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Mariano, J.D.; Urbanetz, J., Jr. The Energy Storage System Integration Into Photovoltaic Systems: A Case Study of Energy Management at UTFPR. Front. Energy Res. 2022, 10, 831245. [Google Scholar] [CrossRef]
- Sutikno, T.; Arsadiando, W.; Wangsupphaphol, A.; Yudhana, A.; Facta, M. A Review of Recent Advances on Hybrid Energy Storage System for Solar Photovoltaics Power Generation. IEEE Access 2022, 10, 42346–42364. [Google Scholar] [CrossRef]
- Sugihara, H.; Yokoyama, K.; Saeki, O.; Tsuji, K.; Funaki, T. Economic and Efficient Voltage Management Using Customer-Owned Energy Storage Systems in a Distribution Network With High Penetration of Photovoltaic Systems. IEEE Trans. Power Syst. 2013, 28, 102–111. [Google Scholar] [CrossRef]
- Yfanti, S.; Sakkas, N. Technology Readiness Levels (TRLs) in the Era of Co-Creation. Appl. Syst. Innov. 2024, 7, 32. [Google Scholar] [CrossRef]
- Rahman, M.; Oni, A.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Pimm, A.; Palczewski, J.; Barbour, E.; Cockerill, T. Using electricity storage to reduce greenhouse gas emissions. Appl. Energy 2021, 282, 116199. [Google Scholar] [CrossRef]
- Metwaly, M.; Teh, J. Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability. IEEE Access 2020, 8, 181547–181559. [Google Scholar] [CrossRef]
- Nguyen, H.; Song, J.; Han, Z. Distributed Demand Side Management with Energy Storage in Smart Grid. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 3346–3357. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.; Zhang, X.; Wang, Z.; Gao, W.; Xu, Y. System value and utilization performance analysis of grid-integrated energy storage technologies in Japan. J. Energy Storage 2023, 63, 107051. [Google Scholar] [CrossRef]
- Mallapragada, D.S.; Sepulveda, N.A.; Jenkins, J.D. Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Appl. Energy 2020, 275, 115390. [Google Scholar] [CrossRef]
- Calero, F.; Cañizares, C.A.; Bhattacharya, K.; Anierobi, C.; Calero, I.; de Souza, M.F.Z.; Farrokhabadi, M.; Guzman, N.S.; Mendieta, W.; Peralta, D.; et al. A review of modeling and applications of energy storage systems in power grids. Proc. IEEE 2022, 111, 806–831. [Google Scholar] [CrossRef]
- Ahmed, D.; Maraz, K.M. Revolutionizing energy storage: Overcoming challenges and unleashing the potential of next generation Lithium-ion battery technology. Mater. Eng. Res. 2023, 5, 265–278. [Google Scholar] [CrossRef]
- Karapidakis, E.; Markaki, M.; Kikaki, A.; Yfanti, S.; Nikologiannis, M. Introduction of Electricity Storage and Photovoltaics for an Adequate Self-Sufficiency in Large Building Complexes. WSEAS Trans. Environ. Dev. 2024, 20, 37–45. [Google Scholar] [CrossRef]
- Yfanti, S.; Sakkas, N.; Vailakis, N.; Nistikaki, A. Environmental Sustainability and Regional Competitiveness: Innovative Steps by a Local Public Authority towards Energy Saving. J. Energy Power Eng. 2019, 13, 149–161. [Google Scholar] [CrossRef]
- Behabtu, H.A.; Messagie, M.; Coosemans, T.; Berecibar, M.; Anlay Fante, K.; Kebede, A.A.; Mierlo, J.V. A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020, 12, 10511. [Google Scholar] [CrossRef]
- Bhatt, A.; Ongsakul, W.; Madhu, N.M. Optimal techno-economic feasibility study of net-zero carbon emission microgrid integrating second-life battery energy storage system. Energy Convers. Manag. 2022, 266, 115825. [Google Scholar] [CrossRef]
- Erdiwansyah, E.; Mahidin, M.; Husin, H.; Nasaruddin, N.; Zaki, M.; Muhibbuddin. A critical review of the integration of renewable energy sources with various technologies. Prot. Control. Mod. Power Syst. 2021, 6, 3. [Google Scholar] [CrossRef]
- Stavrakakis, G.M.; Bakirtzis, D.; Drakaki, K.K.; Yfanti, S.; Katsaprakakis, D.A.; Braimakis, K.; Langouranis, P.; Terzis, K.; Zervas, P.L. Application of the Typology Approach for Energy Renovation Planning of Public Buildings’ Stocks at the Local Level: A Case Study in Greece. Energies 2024, 17, 689. [Google Scholar] [CrossRef]
- Danielis, R.; Massi Pavan, A.; Blasuttigh, N.; Scorrano, M. Simulating the Diffusion of Residential Rooftop Photovoltaic, Battery Storage Systems and Electric Cars in Italy. An Exploratory Study Combining a Discrete Choice and Agent-Based Modelling Approach. Energies 2023, 16, 557. [Google Scholar] [CrossRef]
- Eti, S. Selecting the Optimal Clean Energy Projects for Emerging Economies. In Clean Energy Investments for Zero Emission Projects; Dinçer, H., Yüksel, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 13–23. ISBN 9783031129575. [Google Scholar] [CrossRef]
- Paspatis, A.; Fiorentzis, K.; Katsigiannis, Y.; Karapidakis, E. Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete. Mathematics 2022, 10, 1065. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables. Energy 2017, 120, 642–651. [Google Scholar] [CrossRef]
- Ríos-Fernández, J.C.; González-Caballín, J.M.; Meana-Fernández, A.; Gutiérrez-Trashorras, A.J. Residual energy use and energy efficiency improvement of European supermarket facilities during the post-COVID and energy crisis period. Heliyon 2024, 10, e29781. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Shenoy, P.; Mishra, A.; Irwin, D.; Gu, Y.; Zhu, T. Minimizing electricity costs by sharing energy in sustainable microgrids. In BuildSys’14: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis, TN, USA, 3–6 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 120–129. [Google Scholar] [CrossRef]
- Smith, A. Green Procurement Practices for Eco-Friendly Warehousing. 2023. Available online: https://www.researchgate.net/profile/Oreitan-Motunrayo/publication/380573849_GREEN_PROCUREMENT_PRACTICES_FOR_ECO-FRIENDLY_WAREHOUSING/links/664427ca06ea3d0b746ac94c/GREEN-PROCUREMENT-PRACTICES-FOR-ECO-FRIENDLY-WAREHOUSING.pdf (accessed on 7 November 2024).
- Stamadianos, T.; Kyriakakis, N.A.; Marinaki, M.; Marinakis, Y. Meeting the Charging Demand of Electric Vehicles in Greece: Enabling Intercity Trips. Sustain. Energy Grids Netw. 2024, 39, 101466. [Google Scholar] [CrossRef]
- Satterfield, C.; Nigro, N. A Financial Analysis of Common EV Charging Business Models for Retail Site Hosts; Technical Report; Atlas Public Policy: Washington, DC, USA, 2020. [Google Scholar]
- Filote, C.; Felseghi, R.A.; Raboaca, M.S.; Aşchilean, I. Environmental impact assessment of green energy systems for power supply of electric vehicle charging station. Int. J. Energy Res. 2020, 44, 10471–10494. [Google Scholar] [CrossRef]
- Yasmeen, A.; Javaid, N.; Zahoor, S.; Iftikhar, H.; Shafiq, S.; Khan, Z.A. Optimal Energy Management in Microgrids Using Meta-Heuristic Technique. In Proceedings of the Advances in Internet, Data & Web Technologies; Barolli, L., Xhafa, F., Javaid, N., Spaho, E., Kolici, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 303–314. [Google Scholar]
- Ghadirinejad, N.; Ottermo, F.; Nowzari, R.; Alsaadi, N.; Ghadiri Nejad, M. Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case. Sustainability 2023, 15, 12800. [Google Scholar] [CrossRef]
- Sharma, P.; Sahoo, D.; Saini, K.K.; Mathur, H.D.; Siguerdidjane, H. Real-Time Data-Based Optimal Power Management of a Microgrid Installed at BITS Supermarket: A Case Study. In Proceedings of the Next Generation Systems and Networks; Bansal, H.O., Ajmera, P.K., Joshi, S., Bansal, R.C., Shekhar, C., Eds.; Springer Nature: Singapore, 2023; pp. 395–407. [Google Scholar]
- Yan, Q.; Zhang, B.; Kezunovic, M. Optimized Operational Cost Reduction for an EV Charging Station Integrated With Battery Energy Storage and PV Generation. IEEE Trans. Smart Grid 2019, 10, 2096–2106. [Google Scholar] [CrossRef]
- Yamasaki, J.; Tominaga, R.; Ishii, Y.; Shimizu, A.; Kinoshita, S.; Wakao, S. Optimization of Installation and Operation for Retail Store with Photovoltaic, Storage Battery and EV Quick Charger. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 19–24 June 2011; pp. 1893–1896. [Google Scholar]
- JRC Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 25 September 2024).
- Lamagna, M.; Nastasi, B.; Groppi, D.; Nezhad, M.M.; Garcia, D.A. Hourly Energy Profile Determination Technique from Monthly Energy Bills. Build. Simul. 2020, 13, 1235–1248. [Google Scholar] [CrossRef]
- Luo, X.; Hong, T.; Chen, Y.; Piette, M.A. Electric Load Shape Benchmarking for Small- and Medium-Sized Commercial Buildings. Appl. Energy 2017, 204, 715–725. [Google Scholar] [CrossRef]
- Directive (EU) 2024/1275; Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings. European Union: Maastricht, The Netherlands, 2024.
- Karapidakis, E.; Nikologiannis, M.; Markaki, M.; Kikaki, A.; Yfanti, S. Assessment of Batteries’ Contribution for Optimal Self-Sufficiency in Large Building Complexes. Appl. Syst. Innov. 2023, 6, 107. [Google Scholar] [CrossRef]
- Available online: https://www.raaey.gr/energeia/en/consumers/prices/ (accessed on 27 September 2024).
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Nominal Panel Capacity: | 430 W |
Panel Efficiency: | 22.2% |
Panel Dimensions L × W × H: | 1865 × 1040 × 30 mm |
Panel Cost: | 600 EUR/kW |
Energy Content/Rack: | 154 kWh |
Battery Efficiency: | 90% |
Rack Dimensions H × W × D: | 2200 mm × 1000 mm × 938 mm |
Rack Cost: | 350 EUR/kWh |
Inverter Cost: | 100 EUR/kW of PV capacity |
PV O&M Cost: | 5% of PV initial cost |
NPV Discount Rate: | 3% |
Battery O&M: | 4 EUR/kWh of storage capacity |
Location | Store | PV Panels | BESS Racks | Occupied Area (m2) | Occupied Area (%) | CAPEX (EUR) | NPV (EUR) |
---|---|---|---|---|---|---|---|
Agios Nikolaos | AN1 | 100 | 0 | 158.87 | 15.81 | 30,100.00 | 337,208.78 |
AN2 | 73 | 0 | 115.97 | 29.74 | 22,273.00 | 202,538.50 | |
Chania | X1 | 100 | 0 | 158.87 | 23.00 | 32,500.00 | 332,976.67 |
X2 | 199 | 0 | 499.81 | 27.16 | 65,599.00 | 669,628.50 | |
X3 | 165 | 0 | 445.80 | 29.92 | 56,265.00 | 574,382.94 | |
Heraklion | H1 | 10 | 0 | 15.89 | 19.61 | 3010.00 | 35,470.38 |
H2 | 99 | 0 | 157.28 | 29.96 | 29,799.00 | 310,023.99 | |
H3 | 99 | 0 | 157.28 | 17.59 | 30,399.00 | 321,437.20 | |
H4 | 99 | 0 | 157.28 | 28.60 | 29,799.00 | 242,966.24 | |
H5 | 99 | 0 | 157.28 | 26.21 | 29,799.00 | 265,996.68 | |
H6 | 92 | 0 | 146.16 | 29.53 | 27,692.00 | 243,590.52 | |
H7 | 50 | 0 | 79.43 | 29.86 | 15,050.00 | 164,161.89 | |
H8 | 99 | 0 | 157.28 | 26.21 | 29,799.00 | 250,978.01 | |
H9 | 99 | 0 | 157.28 | 18.29 | 32,799.00 | 361,064.22 | |
Ierapetra | I1 | 99 | 0 | 157.28 | 15.73 | 35,499.00 | 350,892.33 |
Moires | M1 | 99 | 0 | 157.28 | 15.48 | 39,299.00 | 351,224.41 |
M2 | 99 | 0 | 157.28 | 18.29 | 33,399.00 | 345,302.63 | |
Neapoli | N1 | 99 | 0 | 157.28 | 19.42 | 30,399.00 | 283,395.66 |
Rethymnon | R1 | 99 | 0 | 157.28 | 23.47 | 32,499.00 | 341,824.75 |
Tympaki | T1 | 99 | 0 | 157.28 | 19.42 | 34,899.00 | 351,704.80 |
Total | 1977 | 0 | 640,877.00 | 6,336,769.10 |
Location | Store | PV Panels | BESS Racks | Occupied Area (m2) | Occupied Area (%) | CAPEX (EUR) | NPV (EUR) |
---|---|---|---|---|---|---|---|
Agios Nikolaos | AN1 | 100 | 0 | 158.87 | 15.81 | 30,100.00 | 337,208.78 |
AN2 | 73 | 0 | 115.97 | 29.74 | 22,273.00 | 202,538.50 | |
Chania | X1 | 100 | 0 | 158.87 | 23.00 | 32,500.00 | 332,976.67 |
X2 | 199 | 0 | 499.81 | 27.16 | 65,599.00 | 669,628.50 | |
X3 | 165 | 0 | 445.80 | 29.92 | 56,265.00 | 574,382.94 | |
Heraklion | H1 | 10 | 0 | 15.89 | 19.61 | 3010.00 | 35,470.38 |
H2 | 99 | 0 | 157.28 | 29.96 | 29,799.00 | 310,023.99 | |
H3 | 99 | 0 | 157.28 | 17.59 | 30,399.00 | 321,437.20 | |
H4 | 99 | 1 | 158.22 | 28.77 | 83,699.00 | 271,795.71 | |
H5 | 99 | 1 | 158.22 | 26.37 | 83,699.00 | 284,485.85 | |
H6 | 92 | 1 | 147.10 | 29.72 | 81,592.00 | 260,173.91 | |
H7 | 50 | 0 | 79.43 | 29.86 | 15,050.00 | 164,161.89 | |
H8 | 99 | 1 | 158.22 | 26.37 | 83,699.00 | 276,662.02 | |
H9 | 99 | 0 | 157.28 | 18.29 | 32,799.00 | 361,064.22 | |
Ierapetra | I1 | 99 | 0 | 157.28 | 15.73 | 35,499.00 | 350,892.33 |
Moires | M1 | 99 | 0 | 157.28 | 15.48 | 39,299.00 | 351,224.41 |
M2 | 99 | 0 | 157.28 | 18.29 | 33,399.00 | 345,302.63 | |
Neapoli | N1 | 99 | 0 | 157.28 | 19.42 | 30,399.00 | 283,395.66 |
Rethymnon | R1 | 99 | 0 | 157.28 | 23.47 | 32,499.00 | 341,824.75 |
Tympaki | T1 | 99 | 0 | 157.28 | 19.42 | 34,899.00 | 351,704.80 |
Total | 1977 | 4 | 856,477.00 | 6,426,355.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapidakis, E.; Nikologiannis, M.; Markaki, M.; Kouzoukas, G.; Yfanti, S. Enhancing Renewable Energy Integration and Implementing EV Charging Stations for Sustainable Electricity in Crete’s Supermarket Chain. Energies 2025, 18, 754. https://doi.org/10.3390/en18030754
Karapidakis E, Nikologiannis M, Markaki M, Kouzoukas G, Yfanti S. Enhancing Renewable Energy Integration and Implementing EV Charging Stations for Sustainable Electricity in Crete’s Supermarket Chain. Energies. 2025; 18(3):754. https://doi.org/10.3390/en18030754
Chicago/Turabian StyleKarapidakis, Emmanuel, Marios Nikologiannis, Marini Markaki, Georgios Kouzoukas, and Sofia Yfanti. 2025. "Enhancing Renewable Energy Integration and Implementing EV Charging Stations for Sustainable Electricity in Crete’s Supermarket Chain" Energies 18, no. 3: 754. https://doi.org/10.3390/en18030754
APA StyleKarapidakis, E., Nikologiannis, M., Markaki, M., Kouzoukas, G., & Yfanti, S. (2025). Enhancing Renewable Energy Integration and Implementing EV Charging Stations for Sustainable Electricity in Crete’s Supermarket Chain. Energies, 18(3), 754. https://doi.org/10.3390/en18030754