Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage
Abstract
1. Introduction
2. Background
2.1. Carbon Dioxide Point Emitters
2.2. Carbon Capture, Utilization, and Storage
2.3. Renewable Energy Sources
2.4. Green Hydrogen Production
2.5. Methanol Production
2.6. Barriers to Producing Methanol
3. Methods
3.1. Carbon Dioxide Sources
3.2. Carbon Dioxide Capture
3.3. Carbon Dioxide Transport and Storage
3.4. Biomass Availability and Energy Yield
3.5. Hydrogen Production Using Renewable Energy Sources
3.6. Methanol Production
3.7. Cost Analysis and Economic Feasibility
4. Analysis
4.1. The CO2 Point Sources
4.2. Estimated Carbon Dioxide Capture and Energy Requirements
4.3. Carbon Dioxide On-Site Storage and Transport
4.4. Biomass Availability and Its Energy Potential
4.5. Green Hydrogen Production and Its Renewable Energy Demand
4.6. Methanol Production Pathways
4.7. Cost Analysis and Economic Feasibility in Nova Scotia
5. Discussion
5.1. Techno-Economic Analysis
5.2. Public Acceptance
6. Summary
Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAD | Canadian dollars |
| CAPEX | Capital Expenditure |
| CCS | Carbon Capture and Storage |
| CCUS | Carbon Capture, Utilization, and Storage |
| CHP | Combined heat and power |
| CO2 | Carbon dioxide |
| CRF | Capital Recovery Factor |
| BECCS | Bioenergy with Carbon Capture and Storage |
| eMethanol | Electro Methanol |
| GHGRP | Greenhouse Gas Reporting Program |
| GJ | Gigajoule |
| GWh | Gigawatt-hour |
| HER | Hydrogen Evolution Reaction |
| HHV | Higher Heating Value |
| kt | Thousand Tonnes |
| kWh/t CO2 | Kilowatt-hour per tonne of carbon dioxide |
| LCO2 | Liquefied CO2 |
| LCOH | Levelized Cost of Heat |
| Mt | Million Tonnes |
| Mtpa | Million Tonnes per annum |
| MWh | Megawatt-hour |
| NSPI | Nova Scotia Power Incorporated |
| OER | Oxygen Evolution Reaction |
| OPEX | Operational Expenditure |
| SMR | Steam methane reforming |
| TWh/year | Terawatt-hour per year |
| € | Euros |
References
- Schorn, F.; Walters, R.; Blunier, B.; Schnorbus, T.; Heuser, B.; Peters, R.; Stolten, D. Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations. Adv. Appl. Energy 2021, 3, 100050. [Google Scholar] [CrossRef]
- Deka, T.J.; Prajapati, R.; Jha, A.; Rooney, D.W. Methanol fuel production, utilization, and technoeconomy: A Review. Environ. Chem. Lett. 2022, 20, 3525–3554. [Google Scholar] [CrossRef]
- Hughes, L. The Hidden Costs of Premier Tim Houston’s Sustainable Aviation Fuel Promise. Halifax Examiner, 25 November 2024. Available online: https://www.halifaxexaminer.ca/commentary/the-hidden-costs-of-premier-tim-houstons-sustainable-aviation-fuel-promise/ (accessed on 12 April 2025).
- Methanol Institute. Marine Methanol: Future-Proof Shipping Fuel; Methanol Institute: Singapore, 2023. [Google Scholar]
- Methanex Corporation. Methanex 2024 Sustainability Report; Methanex Corporation: Vancouver, BC, Canada, 2024. [Google Scholar]
- Rafiq, A.; Farooq, A.; Gheewala, S.H. Life Cycle Assessment of CO2-Based and Conventional Methanol Production Pathways in Thailand. Processes 2024, 12, 1868. [Google Scholar] [CrossRef]
- Skoufa, Z.; Johnson, M. Propelling the Maritime Industry to Sustainability with Methanol. Decarbonization Technology. 20 November 2024, p. 274.
- IRENA. Innovation Outlook: Renewable Methanol; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Methanol Institute. Carbon Footprint of Methanol. The Methanol Institute. 2025. Available online: https://www.methanol.org/renewable/ (accessed on 12 April 2025).
- Sollai, S.; Piras, G.; Buiatti, G.; Ferrara, F.; Pettinau, A. Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment. J. CO2 Util. 2023, 68, 102345. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.; Lee, H.; Park, J. Exploring the potential of hybrid green and blue methanol in achieving negative CO2 emissions: A carbon techno-economic perspective. Chem. Eng. J. 2025, 508, 160910. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zhang, H.; Jiao, C.; Wang, Q.F.; Lin, X.L. Review on global CCUS technology and application. Mod. Chem. Ind. 2021, 41, 5–10. [Google Scholar] [CrossRef]
- Hughes, L. Wildfires and Nova Scotia’s Net-Zero Targets. 20 June 2023. Available online: http://dclh.electricalandcomputerengineering.dal.ca/enen/2023/230620_ANS_Wildfires_and_NBS.htm (accessed on 24 June 2023).
- Ahmadipour, M.; Ridha, H.M.; Ali, Z.; Zhining, Z.; Ahmadipour, M.; Othman, M.M.; Ramachandaramurthy, V.K. A comprehensive review on biomass energy system optimization approaches: Challenges and issues. Int. J. Hydrogen Energy 2025, 106, 1167–1183. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Pei, Z.; Chen, W.; Liu, J.; Zhang, X.; Li, S.; Gong, W. Quantifying strong point sources emissions of CO2 using spaceborne LiDAR: Method development and potential analysis. Energy Convers. Manag. 2023, 292, 117346. [Google Scholar] [CrossRef]
- ECCC. About the Greenhouse Gas Reporting Program. Environment and Climate Change Canada. 2 May 2024. Available online: https://data-donnees.az.ec.gc.ca/data/substances/monitor/greenhouse-gas-reporting-program-ghgrp-facility-greenhouse-gas-ghg-data/PDGES-GHGRP-GHGEmissionsGES-2004-Present.xlsx (accessed on 20 May 2024).
- Mohammad, Y.; Hussameldin, I. A comprehensive review on recent trends in carbon capture, utilization, and storage techniques. J. Environ. Chem. Eng. 2023, 11, 111393. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, X.; Sun, Y.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- NETL. 9.2. Carbon Dioxide Capture Approaches. National Energy Technology Laboratory. Available online: https://netl.doe.gov/research/carbon-management/energy-systems/gasification/gasifipedia/capture-approaches (accessed on 24 February 2024).
- Shell Catalysts & Technologies. Shell CANSOLV® CO2 Capture System: A Leading Post-Combustion Carbon Dioxide (CO2) Removal Technology. Shell Catalysts & Technologies. 2019. Available online: https://catalysts.shell.com/hubfs/Shell%20Cansolv%20CO2%20Capture%20System%20Fact%20sheet.pdf?hsCtaTracking=c10df630-ddd5-4763-9d90-fcfd42d3bbb8%7Ce3e3ca46-36b8-45b4-b248-b51bd9e45613 (accessed on 16 October 2023).
- Al Baroudi, H.; Awoyomi, A.; Patchigolla, K.; Jonnalagadda, K.; Anthony, E.J. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Appl. Energy 2021, 287, 116510. [Google Scholar] [CrossRef]
- Simonsen, K.; Hansen, D.S.; Pedersen, S. Challenges in CO2 transportation: Trends and perspectives. Renew. Sustain. Energy Rev. 2024, 191, 114149. [Google Scholar] [CrossRef]
- Smith, E.; Morris, J.; Kheshgi, H.; Teletzke, G.; Herzog, H.; Paltsev, S. The cost of CO2 transport and storage in global integrated assessment modeling. Int. J. Greenh. Gas Control 2021, 109, 103367. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X.; Huang, K.; Fu, L.; Azimi, M. carbon dioxide transport via pipelines: A systematic review. J. Clean. Prod. 2020, 266, 121994. [Google Scholar] [CrossRef]
- Peletiri, S.; Rahmanian, N.; Mujtaba, I.M. CO2 Pipeline Design: A Review. Energies 2018, 11, 2184. [Google Scholar] [CrossRef]
- Onyebuchi, V.; Kolios, A.; Hanak, D.; Biliyok, C.; Manovic, V. A systematic review of key challenges of CO2 transport via pipelines. Renew. Sustain. Energy Rev. 2018, 81, 2563–2583. [Google Scholar] [CrossRef]
- Advisory Council of the European Technology Platform for Zero Emission Fossil Fuel Power Plants. The Cost of CO2 Transport: Post-Demonstration CCS in the EU; EU Zero Emissions Platform ZEP: Brussels, Belgium, 2011. [Google Scholar]
- Khan, M.N.; Siddiqui, S.; Thakur, G.C. Recent Advances in Geochemical and Mineralogical Studies on CO2–Brine–Rock Interaction for CO2 Sequestration: Laboratory and Simulation Studies. Energies 2024, 17, 3346. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, D.; Li, Y.; Li, C.; Tang, H. Numerical simulation study of CO2 storage capacity in Deep Saline aquifers. Sci. Technol. Energy Transit. 2024, 79, 12. [Google Scholar] [CrossRef]
- Hall-Spencer, J.M.; Harvey, B.P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 2019, 3, 197. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, Y.; Liu, C.; Geng, H.; Yao, C. Study on the diffusion and migration law of CO2 sequestrated in abandoned coal mine goaf. Deep Undergr. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Li, X.; Huan, H.; Lin, H.; Li, Z.; Du, F.; Cao, Z.; Fan, X.; Ren, H. Determination method of rational position for working face entries in coordinated mining of section coal pillars and lower sub-layer. Sci. Rep. 2025, 15, 29440. [Google Scholar] [CrossRef]
- Zhengzheng, C.; Yi, X.; Yi, X.; Feng, D.; Zhenhua, L.; Cunhan, H.; Shuren, W.; Yongqiang, Y.; Wenqiang, W.; Minglei, Z.; et al. Diffusion Evolution Rules of Grouting Slurry in Mining-induced Cracks in Overlying Strata. Mech. Rock Mech. Rock Eng. 2025, 58, 6493–6512. [Google Scholar] [CrossRef]
- McCoy, M.; Hughes, L. Nova Scotia’s Carbon Sinks and Pathways to Net-Zero by 2050. 26 November 2021. Available online: http://lh.ece.dal.ca/enen/2021/210827_McCOY_HUGHES_NS_C_Sinks_and_Pathways_to_Net-Zero.pdf (accessed on 20 May 2025).
- Cryoteknik. LCO2 Storage Tanks. 2023. Available online: https://cryoteknik.com/en/product/lco2-storage-tanks (accessed on 16 August 2024).
- Pentair. Bulk Storage of Liquid CO2. 2017. Available online: https://carboncapture.pentair.com/en/solutions/cc-product-liquid-co2-storage-tanks-with-liquid-level-indicator (accessed on 20 May 2025).
- Directank. Understanding the Cost Benefit Analysis for Aboveground Tanks. 10 August 2023. Available online: https://directank.com/aboveground-tanks-understanding-the-cost-benefit-analysis/ (accessed on 10 August 2023).
- Amiri, N.; Shaterabadi, M.; Ben-Brahim, L.; Ahmadi Jirdehi, M. Assessing the eco-environmental aspects of fossil-fuels-based units substitution of Point Aconi thermal power plant by green-based energies: A case study of Canada. Electr. Eng. 2025, 107, 1331–1346. [Google Scholar] [CrossRef]
- NS Power. Powering a Green Nova Scotia, Together: Clean Energy Sources. 2025. Available online: https://www.nspower.ca/cleanandgreen/clean-energy/clean-energy-sources (accessed on 20 April 2025).
- NS Natural Resources. Wind Energy in Nova Scotia. Department of Natural Resources and Renewables. Available online: https://energy.novascotia.ca/renewables/wind-energy (accessed on 20 April 2025).
- Energy Hub. Solar Power Nova Scotia. 9 September 2023. Available online: https://www.energyhub.org/nova-scotia/#solar-irradiance (accessed on 18 May 2025).
- NRCan. Photovoltaic Potential and Solar Resource Maps of Canada. Natural Resources Canada. 16 January 2025. Available online: https://natural-resources.canada.ca/energy-sources/renewable-energy/photovoltaic-potential-solar-resource-maps-canada (accessed on 18 May 2025).
- Nakamoto, Y.; Eguchi, S. How do seasonal and technical factors affect generation efficiency of photovoltaic power plants. Renew. Sustain. Energy Rev. 2024, 199, 114441. [Google Scholar] [CrossRef]
- Halifax Examiner. Nova Scotia Power to Burn More Biomass to Generate “Renewable” Electricity. 7 September 2022. Available online: https://www.halifaxexaminer.ca/government/nova-scotia-power-to-burn-more-biomass-to-generate-renewable-electricity/ (accessed on 20 May 2025).
- Acampora, L.; Grilletta, S.; Costa, G. The Integration of Carbon Capture, Utilization, and Storage (CCUS) in Waste-to-Energy Plants: A Review. Energies 2025, 18, 1883. [Google Scholar] [CrossRef]
- Castro, R. Electricity Production from Renewables: Combined Heat and Power; Springer: Cham, Switzerland, 2022; pp. 351–388. [Google Scholar]
- Furubayashi, T.; Nakata, T. Analysis of woody biomass utilization for heat, electricity, and CHP in a regional city of Japan. J. Clean. Prod. 2021, 290, 125665. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Malico, I. Forest Bioenergy: From Wood Production to Energy Use; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- DNR. State of the Forest 2016; Nova Scotia Department of Natural Resources: Halifax, NS, Canada, 2017; ISBN 978-1-55457-737-8. [Google Scholar]
- Li, Y.; Brando, P.M.; Morton, D.C.; Lawrence, D.M.; Yang, H.; Randerson, J.T. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 2022, 13, 1964. [Google Scholar] [CrossRef] [PubMed]
- Environment. Ecologists Call for Action on Climate Crisis Amidst NS Wildfires. 1 June 2023. Available online: https://environmentjournal.ca/ecologist-calls-for-action-on-climate-crisis-amidst-nova-scotia-wildfires/ (accessed on 10 July 2025).
- Forest NS. Forestry: A Proactive Approach to Wildfire Prevention. 2023. Available online: https://www.forestns.ca/forest-ns-blog/forestry-a-proactive-approach-to-wildfire-prevention (accessed on 10 September 2024).
- Earth. 5 Sustainable Forest Management Strategies for Wildfire Prevention. 7 December 2022. Available online: https://earth.org/wildfire-prevention/ (accessed on 12 October 2024).
- Forestry. How to Effectively Combat and Prevent Forest Fires. 5 April 2024. Available online: https://forestry.com/guides/how-to-effectively-combat-and-prevent-forest-fires/ (accessed on 20 May 2025).
- NFDP. Annual Harvest Versus Wood Supply. Canadian Council of Forest Ministers CCFM: National Forestry Database. 2 February 2023. Available online: http://nfdp.ccfm.org/en/data/harvest.php (accessed on 13 April 2025).
- IRENA. Green Hydrogen: A Guide to Policy Making; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Energy.gov. Hydrogen Production: Electrolysis. 2 September 2023. Available online: https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis (accessed on 2 June 2024).
- Shih, A.J.; Monteiro, M.C.; Dattila, F.; Pavesi, D.; Philips, M.; da Silva, A.H.; Vos, R.E.; Ojha, K.; Park, S.; van der Heijden, O.; et al. Water electrolysis. Nat. Rev. Methods Primers 2022, 2, 84. [Google Scholar] [CrossRef]
- Enapter. AEM Electrolysers—The Best of Both Worlds. Available online: https://www.enapter.com/aem-electrolysers/ (accessed on 15 April 2025).
- Anand, C.; Chandraja, B.; Nithiya, P.; Akshaya, M.; Tamizhdurai, P.; Shoba, G.; Subramani, A.; Kumaran, R.; Yadav, K.K.; Gacem, A.; et al. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications. Int. J. Hydrogen Energy 2025, 111, 319–341. [Google Scholar] [CrossRef]
- Riaz, M.A.; Trogadas, P.; Aymé-Perrot, D.; Sachs, C.; Dubouis, N.; Girault, H.; Coppens, M.O. Water electrolysis technologies: The importance of new cell designs and fundamental modelling to guide industrial-scale development. Energy Environ. Sci. 2025, 18, 5190–5214. [Google Scholar] [CrossRef]
- Hodges, A.; Hoang, A.L.; Tsekouras, G.; Wagner, K.; Lee, C.Y.; Swiegers, G.F.; Wallace, G.G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nat. Commun. 2022, 13, 1304. [Google Scholar] [CrossRef]
- Hysata. Hysata’s Electrolyser Breaks Efficiency Records. 15 March 2022. Available online: https://hysata.com/news/hysatas-electrolyser-breaks-efficiency-records-enabling-world-beating-green-hydrogen-cost/ (accessed on 13 April 2025).
- New Atlas. Record-Breaking Hydrogen Electrolyzer Claims 95% Efficiency. Available online: https://newatlas.com/energy/hysata-efficient-hydrogen-electrolysis/ (accessed on 16 March 2022).
- DOE. Hydrogen Program. The U.S. Department of Energy. 2009. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf?Status=Master (accessed on 27 October 2025).
- Otsubo, Y. Hydrogen compression and long-distance transportation: Emerging technologies and applications in the oil and gas industry—A technical review. Energy Convers. Manag. X 2025, 25, 100836. [Google Scholar] [CrossRef]
- Gomonov, K.; Permana, C.T.; Handoko, C.T. The growing demand for hydrogen: Current trends, sectoral analysis, and future projections. Unconv. Resour. 2025, 6, 100176. [Google Scholar] [CrossRef]
- Global Affairs Canada. Canada Announces Support for New Hydrogen Project in Nova Scotia. Global Affairs Canada. 29 November 2023. Available online: https://www.canada.ca/en/global-affairs/news/2023/11/canada-announces-support-for-new-hydrogen-project-in-nova-scotia.html (accessed on 21 August 2024).
- EverWind. EverWind Fuels Receives Environmental Approval for First Industrial-Scale Green Hydrogen and Green Ammonia Project in North America. EverWind Fuels Company. 7 February 2023. Available online: https://everwindfuels.com/news/30 (accessed on 26 September 2024).
- Halifax Examiner. Where Will All the ‘Green Energy’ Come from for EverWind Fuels’ ‘Green Hydrogen’ Project? Commentary. 15 December 2022. Available online: https://www.halifaxexaminer.ca/commentary/where-will-all-the-green-energy-come-from-for-everwind-fuels-green-hydrogen-project/ (accessed on 13 April 2025).
- Adeli, K.; Nachtane, M.; Faik, A.; Saifaoui, D.; Boulezhar, A. How Green Hydrogen and Ammonia Are Revolutionizing the Future of Energy Production: A Comprehensive Review of the Latest Developments and Future Prospects. Appl. Sci. 2023, 13, 8711. [Google Scholar] [CrossRef]
- ExxonMobil. ExxonMobil Methanol to Jet Technology to Provide New Route for Sustainable Aviation Fuel Production. 20 June 2022. Available online: https://www.exxonmobilchemical.com/en/resources/library/library-detail/101116/exxonmobil_sustainable_aviation_fuel_production_en (accessed on 12 June 2024).
- Azhari, N.J.; Erika, D.; Mardiana, S.; Ilmi, T. Methanol synthesis from CO2: A mechanistic overview. Results Eng. 2022, 16, 100711. [Google Scholar] [CrossRef]
- Bowker, M. Methanol Synthesis from CO2 Hydrogenation. ChemCatChem 2019, 11, 4238–4246. [Google Scholar] [CrossRef]
- Mærsk. Global Availability of Biogenic CO2 and Implications for Maritime Decarbonization; Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping: Copenhagen, Denmark, 2024. [Google Scholar]
- Galik, C.S.; Benedum, M.E.; Kauffman, M.; Becker, D.R. Opportunities and barriers to forest biomass energy: A case study of four U.S. States. Biomass Bioenergy 2021, 148, 106035. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, D.; Nie, S.; Guan, T.; Luo, Y.; Chen, J.; Gan, H.; Zheng, H. Carbon emission intensity measurement and spatial effect of high energy consuming industries: Evidence from China. Glob. NEST J. 2024, 26, 06437. Available online: https://journal.gnest.org/system/files/2024-10/gnest_06437_final.pdf (accessed on 13 October 2025).
- ECCC. About the Greenhouse Gas Reporting Program. Environment and Climate Change Canada. 24 January 2023. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/greenhouse-gas-emissions/facility-reporting/about.html (accessed on 18 February 2024).
- EPA. Chapter 6–CO2 Capture, Storage, and Transport; U.S. Environmental Protection Agency: Washington, DC, USA, 2022. [Google Scholar]
- NETL. Cost and Performance of Retrofitting NGCC Units for Carbon Capture—Revision 3; U.S. Department of Energy, National Energy Technology Laboratory (NETL): Pittsburgh, PA, USA, 2023. [Google Scholar]
- IEAGHG. Power CCS: Potential for Cost Reductions and Improvements; IEAGHG: Cheltenham, UK, 2024. [Google Scholar]
- Rubin, E.S.; Davison, J.; Herzog, H. The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 2012, 38, 630–671. [Google Scholar] [CrossRef]
- Su, D.; Li, J.; Lucquiaud, M.; Thomson, C.; Chalmers, H. Thermal integration of waste-to-energy plants with post-combustion CO2 capture. Fuels 2023, 332, 126004. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Jianshentank. CO2 Cryogenic Tank. 2019. Available online: https://www.jianshentank.com/products/cryogenic-tank-series/co2-cryogenic-tank.html (accessed on 16 August 2024).
- Okafor, A.C. A Techno-Economic Analysis of the Potential for the Capture and Transportation of Carbon Dioxide for Utilization as an Industrial Feedstock in Nova Scotia. DalSpace. 12 October 2024. Available online: http://hdl.handle.net/10222/84642 (accessed on 15 October 2024).
- Engineeringtoolbox. Carbon Dioxide—Density and Specific Weight vs. Temperature and Pressure. The Engineering ToolBox. 2018. Available online: https://www.engineeringtoolbox.com/carbon-dioxide-d_1000.html (accessed on 24 August 2024).
- Alizadeh, P.; Tabil, L.G.; Mupondwa, E.; Li, X.; Cree, D. Technoeconomic Feasibility of Bioenergy Production from Wood Sawdust. Energies 2023, 16, 1914. [Google Scholar] [CrossRef]
- EPA. Methods for Calculating CHP Efficiency. U.S. Environmental Protection Agency. 4 March 2025. Available online: https://www.epa.gov/chp/methods-calculating-chp-efficiency (accessed on 13 October 2025).
- U.S. Environmental Protection Agency. GHG Emission Factors Hub; U.S. Environmental Protection Agency: Washington, DC, USA, 2025. [Google Scholar]
- Salman, M.; Beguin, B.; Nyssen, T.; Léonard, G. Techno-economic analysis of AMP/PZ solvent for CO2 capture in a biomass CHP plant: Towards net negative emissions. Front. Energy Res. 2024, 12, 1325212. [Google Scholar] [CrossRef]
- Du, Y.; Shen, X.; Kammen, D.M.; Ding, X. Cost-competitive offshore wind-powered green methanol production for maritime transport decarbonization. Nat. Commun. 2025, 16, 5453. [Google Scholar] [CrossRef] [PubMed]
- Methanex. Methanex Posts Regional Contract Methanol Prices for Europe, North America, Asia and China. Methanex Pricing. 2025. Available online: https://www.methanex.com/our-products/about-methanol/pricing/#:~:text=Methanex%20posts%20regional%20contract%20methanol%20prices%20for%20Europe%2C,%28PDF%20134KB%29%20Historical%20Methanex%20Posted%20Price%20%28Excel%20137KB%29 (accessed on 27 October 2025).
- Emera Incorporated. Emera Management’s Discussion & Analysis. 23 February 2023. Available online: https://investors.emera.com/financials/annual-reports/default.aspx (accessed on 20 April 2024).
- NSPI. Nova Scotia Power Final Pre-IRP Report; Nova Scotia Power Incoporated: Halifax, NS, Canada, 2019. [Google Scholar]
- CEEDC. Canadian Energy and Emissions Data Centre. CEEDC IEF District Energy. Available online: https://www.sfu.ca/ceedc/databases.html (accessed on 24 January 2024).
- Xe. Xe Currency Converter. Available online: https://www.xe.com/currencyconverter/convert/?Amount=1&From=EUR&To=CAD (accessed on 20 September 2025).

| Facility Size | Range of CO2 Emissions per Annum | Number of Facilities | Examples |
|---|---|---|---|
| Very small | less than 25 Kt | 6 | Dalhousie Biomass Energy Plant, Touquoy Mine, East River Mill, CKF—Hantsport, Pictou County Plant, and Bridgewater Plant |
| Small | between 25 Kt and 100 Kt | 6 | NSPI’s Port Hawkesbury Biomass Cogeneration Power Plant, Highway 101 Landfill, GFL Environmental Inc., CFB/ BFC Halifax—Parc Windsor Park, Otter Lake Landfill, and Waterville Plant |
| Medium | between 100 Kt and 1.2 Mt | 5 | NSPI’s Tufts Cove Generating Station, Donkin Mine, NSPI’s Point Tupper and Point Aconi Generating Stations, and Brookfield Cement Plant. |
| Large | above 1.2 Mt | 2 | NSPI’s Lingan and Trenton Generating Stations |
| Tenure | Species Group | Year | ||||
|---|---|---|---|---|---|---|
| 2018 | 2019 | 2020 | 2021 | 2022 | ||
| Private Land | Hardwood (m3) | 506,040 | 431,352 | 254,789 | 345,582 | 272,201 |
| Softwood (m3) | 2,027,606 | 2,062,698 | 1,633,256 | 1,803,915 | 1,434,933 | |
| Provincial Land | Hardwood (m3) | 145,326 | 120,661 | 80,071 | 128,426 | 78,896 |
| Softwood (m3) | 680,206 | 699,915 | 534,347 | 347,638 | 529,024 | |
| Hardwood (m3) | 651,366 | 552,013 | 334,860 | 474,008 | 351,097 | |
| Softwood (m3) | 2,707,812 | 2,762,613 | 2,167,603 | 2,151,553 | 1,963,957 | |
| Annual total (m3) | 3,359,178 | 3,314,626 | 2,502,463 | 2,625,561 | 2,315,054 | |
| Facility Type | Minimum Annual Emissions | Maximum Annual Emissions |
|---|---|---|
| Small | ≤1 Kt | <100 Kt |
| Medium | ≤100 Kt | <1.2 Mt |
| Large | ≥1.2 Mt | - |
| Facility Size | Name of Facility | Installed Capacity (MW) | Average Annual Estimated Quantity (ktCO2/yr) | Average Annual Energy Output (GWh) | Emission Intensity (tCO2/MWh) |
|---|---|---|---|---|---|
| Small | Port Hawkesbury Biomass Cogeneration Power Plant | 60 | 34.89 | 131 | 0.26 |
| Medium | Tufts Cove Natural Gas Generating Station | 500 | 947.50 | 1732 | 0.55 |
| Large | Lingan Coal Generating Station | 620 | 2419.24 | 2102 | 1.15 |
| Fuel Source | MCap (tCO2) | eCO2 (kWh/tCO2) | Ecap (GWh) |
|---|---|---|---|
| Biomass (Port Hawkesbury) | 33,000 | 285 | 9.41 |
| Natural Gas (Tufts Cove) | 900,000 | 135 | 121.50 |
| Coal (Lingan) | 2,298,000 | 105 | 241.29 |
| CHP Overall Efficiency (ղov) | Electrical Efficiency (ղe) | Electrical Energy (GWh/yr) | Thermal Energy (GWh/yr) | Capture Efficiency (ղcap) | Captured CO2 (Mt/yr) | Capture Energy (GWh/yr) | % of Electrical Energy Used for Capture |
|---|---|---|---|---|---|---|---|
| 60% | 30% | 1983.33 | 1983.33 | 90% | 2.33 | 664.34 | 33% |
| 60% | 30% | 1983.33 | 1983.33 | 95% | 2.46 | 701.24 | 35% |
| 70% | 35% | 2313.89 | 2313.89 | 90% | 2.33 | 664.34 | 29% |
| 70% | 35% | 2313.89 | 2313.89 | 95% | 2.46 | 701.24 | 30% |
| 80% | 40% | 2644.44 | 2644.44 | 90% | 2.33 | 664.34 | 25% |
| 80% | 40% | 2644.44 | 2644.44 | 95% | 2.46 | 701.24 | 27% |
| Scenario | Captured CO2 (Mt/yr) | Methanol Produced (Mt/yr) | Limiting Feedstock | H2 Utilization (%) | CO2 Utilization (%) |
|---|---|---|---|---|---|
| #1: Port Hawkesbury | 0.033 | 0.024 | CO2 | 3% | 100% |
| #2: Tufts Cove | 0.9 | 0.66 | CO2 | 69% | 100% |
| #3: Lingan | 2.3 | 0.94 | H2 | 100% | 57% |
| #4: Biomass Combustion | 2.46 | 0.94 | H2 | 100% | 53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, A.; Hughes, L. Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage. Energies 2025, 18, 6415. https://doi.org/10.3390/en18246415
Okafor A, Hughes L. Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage. Energies. 2025; 18(24):6415. https://doi.org/10.3390/en18246415
Chicago/Turabian StyleOkafor, Augustine, and Larry Hughes. 2025. "Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage" Energies 18, no. 24: 6415. https://doi.org/10.3390/en18246415
APA StyleOkafor, A., & Hughes, L. (2025). Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage. Energies, 18(24), 6415. https://doi.org/10.3390/en18246415
