Underwater Radiated Noise Analysis of Fixed Offshore Wind Turbines Considering the Acoustic Properties of the Western Coast of the Korean Peninsula
Abstract
1. Introduction
2. Target Model and Environmental Conditions
3. Characterization of Excitation Sources
3.1. Development and Validation of an Integrated Load Analysis System for Offshore Wind Turbines
3.2. Extraction of Wind and Wave Load Excitation Sources
3.3. Extraction of Gear Mesh Frequency (GMF) Excitation Sources
4. Numerical Simulation Model
4.1. Seabed Boundary Conditions
4.1.1. Application of Boundary Constraints to the Wind Turbine
4.1.2. Application of Acoustic Boundary Conditions
4.2. Sea Surface Boundary Conditions
4.3. Structural and Acoustic Meshes
5. Numerical Simulation Results
6. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilgili, M.; Yasar, A.; Simsek, E. Offshore wind power development in Europe and its comparison with onshore counterpart. Renew. Sustain. Energy Rev. 2011, 15, 905–915. [Google Scholar] [CrossRef]
- Oh, K.Y.; Kim, J.Y.; Lee, J.K.; Ryu, M.S.; Lee, J.S. An assessment of wind energy potential at the demonstration offshore wind farm in Korea. Energy 2012, 46, 555–563. [Google Scholar] [CrossRef]
- Mooney, A.; Andersson, M.H.; Stanley, J. Acoustic impacts of offshore wind energy on fishery resources: An evolving source and varied effects across a wind farm’s lifetime. Oceanography 2020, 33, 82–95. [Google Scholar] [CrossRef]
- Galparsoro, I.; Menchaca, I.; Garmendia, J.M.; Borja, Á.; Maldonado, A.D.; Iglesias, G.; Bald, J. Reviewing the ecological impacts of offshore wind farms. npj Ocean Sustain. 2022, 1, 1. [Google Scholar] [CrossRef]
- Kim, B.; Jin, G.; Byeon, Y.; Park, S.Y.; Lee, C.; Lee, J.; Noh, J.; Khim, J.S. Pile driving noise impacts behavioral patterns of im portant East Asian juvenile marine fishes. Mar. Pollut. Bull. 2024, 207, 116893. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) [FAO Report]. Global Fisheries and Aquaculture Production Reaches a New Record High. Available online: https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en (accessed on 24 September 2025).
- Ministry of Oceans and Fisheries. Korean. Available online: https://www.fips.go.kr/p/Main/ (accessed on 24 September 2025).
- Yoon, Y.G.; Han, D.-G.; Choi, J.W. Measurements of underwater operational noise caused by offshore wind turbine off the southwest coast of Korea. Front. Mar. Sci. 2023, 10, 1153843. [Google Scholar] [CrossRef]
- Tougaard, J.; Hermannsen, L.; Madsen, P.T. How loud is the underwater noise from operating offshore wind turbines? J. Acoust. Soc. Am. 2020, 148, 2885. [Google Scholar] [CrossRef]
- Han, D.-G.; Choi, J.W. Measurements and spatial distribution simulation of impact pile driving underwater noise generated during the construction of offshore wind power plant off the southwest coast of Korea. Front. Mar. Sci. 2022, 8, 654991. [Google Scholar] [CrossRef]
- Betke, K.; Schultz-von Glahn, M.; Matuschek, R. Underwater noise emissions from offshore wind turbines. In Proceedings of the Joint Congress CFA/DAGA ’04, Strasbourg, France, 22–25 March 2004; pp. 5–8. [Google Scholar]
- Pangerc, T.; Theobald, P.D.; Wang, L.S.; Robinson, S.P.; Lepper, P.A. Measurement and characterisation of radiated underwater sound from a 3.6 MW monopile wind turbine. J. Acoust. Soc. Am. 2016, 140, 2913. [Google Scholar] [CrossRef]
- Marmo, B.; Roberts, I.; Buckingham, M.P.; King, S.; Booth, C. Modelling of Noise Effects of Operational Offshore Wind Tur Bines Including Noise Transmission Through Various Foundation Types; Scottish Government: Edinburgh, UK, 2013. [Google Scholar]
- Kim, B.-S.; Jin, J.-W.; Bitkina, O.; Kang, K.-W. Ultimate load characteristics of NREL 5-MW offshore wind turbines with dif ferent substructures. Int. J. Energy Res. 2016, 40, 639–650. [Google Scholar] [CrossRef]
- Wei, H.; Shi, J.; Lu, Y.; Peng, Y. Interannual and long-term hydrographic changes in the Yellow Sea during 1977–1998. Deep Sea Res. II 2010, 57, 1025–1034. [Google Scholar] [CrossRef]
- Song, Y.; Kim, C.-J.; Paek, I.-S.; Kim, H.-G. Evaluation of implementation potential of offshore wind farm capacity in Korea using national wind map and commercial wind farm design tool. J. Korean Sol. Energy Soc. 2016, 36, 21–29. (In Korean) [Google Scholar] [CrossRef]
- Ainslie, M.A. Effect of wind on long range propagation in shallow water. In Proceedings of the 7th European Conference on Underwater Acoustics, Delft, The Netherlands, 5–8 July 2004; ECUA: Delft, The Netherlands, 2004. [Google Scholar]
- Xia, C.; Qiao, F.-L.; Yang, Y.; Ma, J.; Yuan, Y. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res. 2006, 111, C11S03. [Google Scholar] [CrossRef]
- Cho, B.; Makris, N.C. Predicting the effects of random ocean dynamic processes on underwater acoustic sensing and commu nication. Sci. Rep. 2020, 10, 4525. [Google Scholar] [CrossRef]
- Jonkman, J.M.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; NREL/TP-500-38060; National Renewable Energy Laboratory: Golden, CO, USA, 2009. Available online: https://docs.nrel.gov/docs/fy09osti/38060.pdf (accessed on 17 September 2025).
- Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T.; Yde, A.; Saetertro, K.; Okstad, K.; et al. Offshore Code Comparison Collaboration Continuation (OC4), Phase I—Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure; NREL/CP-5000-54124. 2012. Available online: https://docs.nrel.gov/docs/fy12osti/54124.pdf (accessed on 17 September 2025).
- Shi, W.; Han, J.; Kim, C.W.; Lee, D.; Shin, H.; Park, H. Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea. Renew. Energy 2015, 74, 406–413. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Introduction—Aerodyn-OLAF Module in OpenFAST: User Documentation. 2023. Available online: https://openfast.readthedocs.io/en/dev/source/user/aerodyn-olaf/Introduction.html (accessed on 17 September 2025).
- KS C IEC 61400-1; Wind Energy Generation Systems—Part 1: Design Requirements. Korean Standards Association: Seoul, Republic of Korea, 2014. (In Korean)
- Zalkind, D.; Shields, M.; Lenfest, E.; Goupee, A.; Allen, C. Open-Loop Control of Adjustable Tuned Mass Dampers for Floating Wind Turbine Platforms [Preprint]. 2021. Available online: https://docs.nrel.gov/docs/fy21osti/78839.pdf (accessed on 17 September 2025).
- Brown, K.; Bortolotti, P.; Branlard, E.; Chetan, M.; Dana, S.; deVelder, N.; Doubrawa, P.; Hamilton, N.; Ivanov, H.; Jonkman, J.; et al. One-to-one aeroservoelastic validation of operational loads and performance of a 2.8 MW wind turbine model in OpenFAST. Wind Energy Sci. 2024, 9, 1791–1810. [Google Scholar] [CrossRef]
- Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D. Simulation-length requirements in the loads analysis of offshore floating wind turbines. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013. [Google Scholar] [CrossRef]
- Singh, D.; Dwight, R.P.; Laugesen, K.; Beaudet, L.; Viré, A. Probabilistic surrogate modeling of offshore wind-turbine loads with chained Gaussian processes. J. Phys. Conf. Ser. 2022, 2265, 032070. [Google Scholar] [CrossRef]
- Nejad, A.R.; Guo, Y.; Gao, Z.; Moan, T. Development of a 5 MW reference gearbox for offshore wind turbines. Wind Energy 2016, 19, 1089–1106. [Google Scholar] [CrossRef]
- Siemens. Siemens Digital Industries Software, Simcenter Nastran Acoustics User’s Guide Version 2312; Siemens: Plano, TX, USA, 2023. [Google Scholar]
- Williams, K.L. An effective density fluid model for acoustic propagation in sediments derived from Biot theory. J. Acoust. Soc. Am. 2001, 110, 2276–2281. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Huang, B.; Liu, L.; Gao, S.; Zhou, H.; Liu, J.; Liu, B.; Zhang, C. Inversion of the physical properties of seafloor surface sediments based on AUV sub-bottom profile data in the northern slope of the South China Sea. Sci. Rep. 2021, 11, 6539. [Google Scholar] [CrossRef]
- Kim, G.Y.; Kim, D.C.; Kim, S.J.; Seo, Y.K.; Jung, J.H.; Kim, Y.E. Physical properties of southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea. Sea J. Korean Soc. Oceanogr. 2000, 5, 335–345. (In Korean) [Google Scholar]
- Schock, S.G. A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE J. Ocean. Eng. 2004, 29, 1200–1217. [Google Scholar] [CrossRef]
- Hovem, J.M.; Ingram, G.D. Viscous attenuation of sound in saturated sand. J. Acoust. Soc. Am. 1979, 66, 1807–1812. [Google Scholar] [CrossRef]
- Vecchiotti, A.; Ryan, T.J.; Vignola, J.F.; Turo, D. Atmospheric sound propagation over rough sea: Numerical evaluation of equivalent acoustic impedance of varying sea states. Acoustics 2024, 6, 489–508. [Google Scholar] [CrossRef]
- Takagaki, N.; Komori, S.; Suzuki, N.; Iwano, K.; Kuramoto, T.; Shimada, S.; Kurose, R.; Takahashi, K. Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett. 2012, 39, L23604. [Google Scholar] [CrossRef]
- HDR. Field Observations During Wind Turbine Operations at the Block Island Wind Farm, Rhode Island; Final Report to the U.S. Department of the Interior; OCS Study BOEM 2019-028; Bureau of Ocean Energy Management, Office of Renewable Energy Programs: Sterling, VA, USA, 2019; p. 281. [Google Scholar]
- Molenkamp, T.; Tsouvalas, A.; Metrikine, A. The influence of contact relaxation on underwater noise emission and seabed vibrations due to offshore vibratory pile installation. Front. Mar. Sci. 2023, 10, 1118286. [Google Scholar] [CrossRef]



















| Property | Specification |
|---|---|
| Rating | 5 MW |
| Rotor Orientation, Configuration | Upwind, 3 Blades |
| Control | Variable Speed, Collective Pitch |
| Drivetrain | High Speed, Multiple-Stage Gearbox |
| Rotor Diameter, Hub Diameter | 126 m, 3 m |
| Hub Height | 90 m |
| Cut-In, Rated, Cut-Out Wind Speed | 3 m/s, 11.4 m/s, 25 m/s |
| Cut-In, Rated Rotor Speed | 6.9 rpm, 12.1 rpm |
| Rated Tip Speed | 80 m/s |
| Overhang, Shaft Tilt, Precone | 5 m, 5°, 2.5° |
| Rotor, Nacelle, Tower Mass | 110,000 kg, 240,000 kg, 347,460 kg |
| Coordinate Location of Overall CM | (−0.2 m, 0.0 m, 64.0 m) |
| DLC | Wind Model | Wave Model | Wind Speeds | Wave Direction | Pitch Angle |
|---|---|---|---|---|---|
| 1.2 | Kamial NTM, B turbulence | Jonswap NSS | 3–25 m/s | −10°, 0°, 10° | Var. |
| Mean Wind Speed [m/s] | [m] | [s] | Occurrence Probability [%] | Turbulence Intensity [%] |
|---|---|---|---|---|
| 5 | 1.04 | 5.96 | 15.1 | 26.2 |
| 9 | 1.33 | 5.85 | 16.39 | 19.2 |
| 15 | 1.94 | 6.11 | 6.27 | 15.7 |
| 25 | 3.61 | 8.05 | 0.11 | 13.6 |
| Zalkind et al. [25] | Brown et al. [26] | Haid et al. [27] | |
|---|---|---|---|
| Turbine type | 15 MW FOWT with TMDs | Onshore 2.8 MW GE wind turbine | OC3Hywind 5 MW NREL wind turbine |
| DLC | 1.2, 1.6, 6.1, 6.3, 6.5 | Based on experiments | 1.1, 1.2 |
| Total simulation time | 800 s | 600 s | 600 s to 6 h |
| Omitted time | First 200 s | First 60 s | First 60 s |
| Property | Details |
|---|---|
| Turbine type | NREL 5 MW Ref. turbine |
| Substructure type | Jacket |
| Wind Type | Turbulent |
| Simulation time | 660 s |
| Repeats | 6 times |
| Sampling rate | 500 Hz (0.002 s) |
| Property | 5 m/s | 9 m/s | 15 m/s | 25 m/s |
|---|---|---|---|---|
| X-dir. Rotor thrust [kN] | 261 | 552 | 526 | 358 |
| Parameter | Details |
|---|---|
| Type | Two planetary + One parallel |
| First stage ratio | 1:3.947 |
| Second stage ratio | 1:6.167 |
| Third stage ratio | 1:3.958 |
| Total ratio | 1:96.354 |
| Designed power [kW] | 5000 |
| Rated input shaft speed [rpm] | 12.1 |
| Rated generator shaft speed [rpm] | 1165.9 |
| Rated input shaft torque [kN-m] | 3946 |
| Rated generator shaft torque [kN-m] | 40.953 |
| Total dry mass [kg] | 530,000 |
| Service life [year] | 20 |
| Parameter | Details |
|---|---|
| Distance from tower | 180 m |
| Depth | 30 m |
| Target frequency | 10–200 Hz |
| Frequency resolution | 5 Hz |
| Target parameter | SPL (Sound Pressure Level) |
| Parameter | Definition | Reference |
|---|---|---|
| Grain density | Kim et al. [33] | |
| Porosity | 0.649 | Kim et al. [33] |
| Tortuosity ) | Schock [34] | |
| Permeability | ] | Schock [34] |
| Viscosity ) | Williams [31] | |
| Fluid density ) | Williams [31] | |
| Pore size (a) | Hovem and Ingram [35] |
| Parameters | Tower | Transition Piece | Jacket |
|---|---|---|---|
| Mesh size | 500 mm | 250 mm | 62.5 mm |
| Mesh type | Tri3 | Tetra4 | Tri3 |
| Property | Details |
|---|---|
| RNA Mass | 350,000 kg |
| ) | |
| ) | |
| ) | |
| ) | |
| ) | |
| ) |
| Property | Details |
|---|---|
| Acoustic mesh type | 3D—tetra4 |
| Jacket contact mesh size | 62.5 mm |
| Maximum mesh size | ) |
| Mesh growth rate | 1.3 |
| OASPL [dB] (10–200 Hz) | Wind Speed | |||
|---|---|---|---|---|
| Distance from Tower | 5 m/s | 9 m/s | 15 m/s | 25 m/s |
| 10 m | 134.7 | 151.3 | 158.6 | 158.6 |
| 50 m | 121.6 | 136.8 | 143.7 | 143.8 |
| 70 m | 117.0 | 130.6 | 137.0 | 137.0 |
| 100 m | 110.4 | 123.6 | 128.0 | 128.1 |
| 180 m | 100.4 | 115.6 | 114.9 | 115.0 |
| Parameter | 5 m/s | 9 m/s | 15 m/s | 25 m/s |
|---|---|---|---|---|
| Time-averaged mean rotor torque | 554 kN-m | 2403 kN-m | 4173 kN-m | 4183 kN-m |
| Range of mean rotor torque | 435 to 695 kN-m | 1774 to 2947 kN-m | 3867 to 4438 kN-m | 3541 to 4730 kN-m |
| Range of relative deviation | −21.5 to +25.5% | −26.1 to +22.6% | −7.3 to +6.3% | −15.4 to +13.1% |
| Range of SPL error | −2.1 to +2.0 dB | −2.6 to +1.8 dB | −0.7 to +0.5 dB | −1.5 to +1.1 dB |
| Yoon et al. [8] | HDR [38] | |
|---|---|---|
| Field | Southwest coast of Korea | Block island (USA) |
| Wind farm | 3 MW × 20 ea | 6 MW × 5 ea |
| Substructure | Jacket | Jacket |
| Mic. distance | 70 m from tower | 50 m from tower |
| Nominal water depth | 3.6 m | 23 m |
| Mic. depth | 4 m above the seabed | 2 m above the seabed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, S.; Cheong, C.; Lee, S.; Lee, G.-s. Underwater Radiated Noise Analysis of Fixed Offshore Wind Turbines Considering the Acoustic Properties of the Western Coast of the Korean Peninsula. Energies 2025, 18, 6151. https://doi.org/10.3390/en18236151
Lee J, Lee S, Cheong C, Lee S, Lee G-s. Underwater Radiated Noise Analysis of Fixed Offshore Wind Turbines Considering the Acoustic Properties of the Western Coast of the Korean Peninsula. Energies. 2025; 18(23):6151. https://doi.org/10.3390/en18236151
Chicago/Turabian StyleLee, Jooyoung, Sangheon Lee, Cheolung Cheong, Songjune Lee, and Gwang-se Lee. 2025. "Underwater Radiated Noise Analysis of Fixed Offshore Wind Turbines Considering the Acoustic Properties of the Western Coast of the Korean Peninsula" Energies 18, no. 23: 6151. https://doi.org/10.3390/en18236151
APA StyleLee, J., Lee, S., Cheong, C., Lee, S., & Lee, G.-s. (2025). Underwater Radiated Noise Analysis of Fixed Offshore Wind Turbines Considering the Acoustic Properties of the Western Coast of the Korean Peninsula. Energies, 18(23), 6151. https://doi.org/10.3390/en18236151

