Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers
Abstract
1. Introduction
2. Tristable Electromagnetic Energy Harvester
3. Experimental Setup
4. Extending the Frequency Bandwidth Through the Use of Stoppers
5. Conclusions
- Influence of stoppers on system performance:The implementation of adjustable stoppers has a direct and measurable impact on the output parameters of the harvester. By appropriately setting the stopper distance, it is possible to effectively tune both the bandwidth and the average output voltage, enabling flexible adaptation of the harvester to environments with variable excitation frequencies.
- Elimination of yoke sticking:One of the major achievements of this work is the complete removal of the sticking phenomenon, in which the yokes previously became trapped in the outer stable positions. This effect, observed in systems without stoppers, caused the disappearance of voltage generation and reduced operational reliability. The application of stoppers prevents this behavior and ensures stable operation even at high vibration amplitudes.
- Bandwidth enhancement:The use of mechanical stoppers resulted in a notable extension of the operational frequency range—up to 14 Hz in the optimal configurations at higher excitation levels. The introduction of adjustable stoppers increased the effective operational bandwidth for excitation levels of 5 m/s2 and 7.5 m/s2. At 2.5 m/s2, the optimal stopper configuration produced performance comparable to the system without stoppers, yielding a bandwidth of 2.6 Hz and an average output voltage of 0.61 V. For 5 m/s2, the bandwidth expanded from 5 Hz to 7.5 Hz (a 1.5× increase) and the mean voltage rose from 0.70 V to 0.77 V (a 1.1× improvement). At 7.5 m/s2, the bandwidth broadened from 6 Hz to 14 Hz (a 2.3× increase) and the mean voltage increased from 0.55 V to 0.85 V (a 1.5× improvement). These results confirm that proper selection of stopper spacing not only stabilizes the dynamic behavior of the system but also enhances its broadband energy conversion capability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Norenberg, J.P.; Luo, R.; Lopes, V.G.; Peterson, J.V.L.L.; Cunha, A. Nonlinear Dynamics of Asymmetric Bistable Energy Harvesters. Int. J. Mech. Sci. 2023, 257, 108542. [Google Scholar] [CrossRef]
- Won, S.S.; Kawahara, M.; Glinsek, S.; Lee, J.; Kim, Y.; Jeong, C.K.; Kingon, A.I.; Kim, S.H. Flexible Vibrational Energy Harvesting Devices Using Strain-Engineered Perovskite Piezoelectric Thin Films. Nano Energy 2019, 55, 182–192. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Yao, S.; Peng, Y. Piezoelectric-Triboelectric Energy Harvester with Elastic Double-Side Stoppers. Int. J. Mech. Sci. 2024, 280, 109561. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, S.; Zhao, X.; Yin, Y.; Ye, W. A Wireless Sensor Network Node Designed for Exploring a Structural Health Monitoring application. Smart Mater. Struct. 2007, 16, 1898. [Google Scholar] [CrossRef]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental Impacts, Pollution Sources and Pathways of Spent Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Nabavi, S.M.H.; Hajforoosh, S.; Nabavi, S.M.A. Battery Selection for Energy-Efficient IoT Devices: A Comparative Study of Longevity Across Environmental Conditions. Int. J. Electrochem. 2025, 2025, 7783200. [Google Scholar] [CrossRef]
- Zanoletti, A.; Carena, E.; Ferrara, C.; Bontempi, E. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries 2024, 10, 38. [Google Scholar] [CrossRef]
- Zuo, L.; Tang, X. Large-Scale Vibration Energy Harvesting. J. Intell. Mater. Syst. Struct. 2013, 24, 1405–1430. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices. Proc. IEEE 2008, 96, 1457–1486. [Google Scholar] [CrossRef]
- Beeby, S.P.; Tudor, M.J.; White, N.M. Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 2006, 17, R175. [Google Scholar] [CrossRef]
- Sezer, N.; Koç, M. A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. Nano Energy 2021, 80, 105567. [Google Scholar] [CrossRef]
- Nord, J.H.; Koohang, A.; Paliszkiewicz, J. The Internet of Things: Review and Theoretical Framework. Expert. Syst. Appl. 2019, 133, 97–108. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration Energy Harvesting in Automotive Suspension System: A Detailed Review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- Kazemi, S.; Nili-Ahmadabadi, M.; Tavakoli, M.R.; Tikani, R. Energy Harvesting from Longitudinal and Transverse Motions of Sea Waves Particles Using a New Waterproof Piezoelectric Waves Energy Harvester. Renew. Energy 2021, 179, 528–536. [Google Scholar] [CrossRef]
- Challa, V.R.; Prasad, M.G.; Shi, Y.; Fisher, F.T. A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability. Smart Mater. Struct. 2008, 17, 015035. [Google Scholar] [CrossRef]
- Glynne-Jones, P.; Tudor, M.J.; Beeby, S.P.; White, N.M. An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems. Sens. Actuators A Phys. 2004, 110, 344–349. [Google Scholar] [CrossRef]
- Muscat, A.; Bhattacharya, S.; Zhu, Y. Electromagnetic Vibrational Energy Harvesters: A Review. Sensors 2022, 22, 5555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cai, J.; Guo, Y.; Li, C.; Wang, J.; Zheng, H. Modeling and Experimental Investigation of an AA-Sized Electromagnetic Generator for Harvesting Energy from Human Motion. Smart Mater. Struct. 2018, 27, 085008. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef]
- Ali, F.; Raza, W.; Li, X.; Gul, H.; Kim, K.H. Piezoelectric Energy Harvesters for Biomedical Applications. Nano Energy 2019, 57, 879–902. [Google Scholar] [CrossRef]
- Hu, D.; Yao, M.; Fan, Y.; Ma, C.; Fan, M.; Liu, M. Strategies to Achieve High Performance Piezoelectric Nanogenerators. Nano Energy 2019, 55, 288–304. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Mistewicz, K.; In-na, P.; Sahu, M.; Rajaitha, P.M.; Kim, H.J. Piezoelectric Energy Harvesting Systems for Biomedical Applications. Nano Energy 2022, 100, 107514. [Google Scholar] [CrossRef]
- Brusa, E.; Carrera, A.; Delprete, C. A Review of Piezoelectric Energy Harvesting: Materials, Design, and Readout Circuits. Actuators 2023, 12, 457. [Google Scholar] [CrossRef]
- Yoo, D.; Park, S.C.; Lee, S.; Sim, J.Y.; Song, I.; Choi, D.; Lim, H.; Kim, D.S. Biomimetic Anti-Reflective Triboelectric Nanogenerator for Concurrent Harvesting of Solar and Raindrop Energies. Nano Energy 2019, 57, 424–431. [Google Scholar] [CrossRef]
- Li, Z.; Saadatnia, Z.; Yang, Z.; Naguib, H. A Hybrid Piezoelectric-Triboelectric Generator for Low-Frequency and Broad-Bandwidth Energy Harvesting. Energy Convers. Manag. 2018, 174, 188–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Zhang, A.; Peng, Z.; Luo, D.; Chen, R.; Wang, F. Electrostatic Energy Harvesting Device with Dual Resonant Structure for Wideband Random Vibration Sources at Low Frequency. Rev. Sci. Instrum. 2016, 87, 125001. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, F.; Chen, L.; Chen, X.; Guo, Y.; Xu, H. Dynamic Characteristics and Experimental Research of Linear-Arch Bi-Stable Piezoelectric Energy Harvester. Micromachines 2022, 13, 814. [Google Scholar] [CrossRef]
- Ahmad, I.; Meng Hee, L.M.; Abdelrhman, A.; Asad Imam, S.; Leong, M.S. Hybrid Vibro-Acoustic Energy Harvesting Using Electromagnetic Transduction for Autonomous Condition Monitoring System. Energy Convers. Manag. 2022, 258, 115443. [Google Scholar] [CrossRef]
- Blokhina, E.; El Aroudi, A.; Alarcon, E.; Galayko, D. Nonlinearity in Energy Harvesting Systems: Micro- and Nanoscale Applications; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Rosso, M.; Ardito, R. A Review of Nonlinear Mechanisms for Frequency Up-Conversion in Energy Harvesting. Actuators 2023, 12, 456. [Google Scholar] [CrossRef]
- Dhote, S.; Li, H.; Yang, Z. Multi-Frequency Responses of Compliant Orthoplanar Spring Designs for Widening the Bandwidth of Piezoelectric Energy Harvesters. Int. J. Mech. Sci. 2019, 157–158, 684–691. [Google Scholar] [CrossRef]
- Mak, K.H.; McWilliam, S.; Popov, A.A.; Fox, C.H.J. Vibro-Impact Dynamics of a Piezoelectric Energy Harvester. Conf. Proc. Soc. Exp. Mech. Ser. 2011, 1, 273–280. [Google Scholar] [CrossRef]
- Tsukamoto, T.; Umino, Y.; Hashikura, K.; Shiomi, S.; Yamada, K.; Suzuki, T. Polymer-Based Piezoelectric Energy Harvester for Low-Frequency Vibration Using Frequency Up-Conversion Driven by Collision with a Flexible Beam. J. Phys. Conf. Ser. 2019, 1407, 012123. [Google Scholar] [CrossRef]
- Kulik, M.; Gabor, R.; Jagieła, M. Surrogate Model for Design Uncertainty Estimation of Nonlinear Electromagnetic Vibration Energy Harvester. Energies 2022, 15, 8601. [Google Scholar] [CrossRef]
- Pelz, P.F.; Groche, P.; Pfetsch, M.E.; Schaeffner, M. Mastering Uncertainty in Mechanical Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Yan, J.; Liu, M.; Jeong, Y.G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance Enhancements in Poly(Vinylidene Fluoride)-Based Piezoelectric Nanogenerators for Efficient Energy Harvesting. Nano Energy 2019, 56, 662–692. [Google Scholar] [CrossRef]
- Shao, N.; Xu, J.; Xu, X. Experimental Study of a Two-Degree-of-Freedom Piezoelectric Cantilever with a Stopper for Broadband Vibration Energy Harvesting. Sens. Actuators A Phys. 2022, 344, 113742. [Google Scholar] [CrossRef]
- Kim, J. A Study on the Improvement of the Durability of an Energy Harvesting Device with a Mechanical Stopper and a Performance Evaluation for Its Application in Trains. Micromachines 2020, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Mohamad Usamah, N.; Saad, A.A.; Ahmad Mazlan, A.Z. Structural Parametric Study of a Piezoelectric Energy Harvester for a Specific Excitation Frequency of an Electric Motor, Considering Fatigue Life. Arch. Acoust. 2025, 50, 265–275. [Google Scholar] [CrossRef]
- Gabor, R.; Kulik, M. Minimization of Stress in the Elastic Element of a Nonlinear Vibration-to-Electric Energy Harvester. Przegląd Elektrotechniczny 2025, 101, 76–80. (In Polish) [Google Scholar]
- Kulik, M.; Jagieła, M.; Łukaniszyn, M. Surrogacy-Based Maximization of Output Power of a Low-Voltage Vibration Energy Harvesting Device. Appl. Sci. 2020, 10, 2484. [Google Scholar] [CrossRef]
- NI-6368 Specifications. Available online: https://www.ni.com/docs/en-US/bundle/pxie-6368-specs/page/specs.html?srsltid=AfmBOorWqrvxIB_ofYny9yiR4hPS6_HBQa136wbYn84Ta9vhVr2Mvv7O (accessed on 15 September 2025).
- NI-9237 Specifications. Available online: https://www.ni.com/docs/en-US/bundle/ni-9237-specs/page/specs.html?srsltid=AfmBOorWrYR765A3hgYlBGRCuA7otesrvil3UtIxb_tsmNdhx6LxWVSv (accessed on 15 September 2025).










| Reference | Harvester Type | Bandwidth (Hz) | Output |
|---|---|---|---|
| [3] | Piezo-triboelectric with mechanical stoppers | 6.9 | 1.2 V piezoelectric + 15.59 triboelectric, max 680 µW |
| [39] | Piezoelectric (2-DOF) with mechanical stoppers | 11 | 94.82 V, max 713 µW |
| This work | Tristable electromagnetic with mechanical stoppers | 14 | 0.96 V avg, 3.6 mW avg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, M.; Gabor, R. Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers. Energies 2025, 18, 6007. https://doi.org/10.3390/en18226007
Kulik M, Gabor R. Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers. Energies. 2025; 18(22):6007. https://doi.org/10.3390/en18226007
Chicago/Turabian StyleKulik, Marcin, and Rafał Gabor. 2025. "Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers" Energies 18, no. 22: 6007. https://doi.org/10.3390/en18226007
APA StyleKulik, M., & Gabor, R. (2025). Extending the Frequency Bandwidth of a Tristable Electromagnetic Energy Harvester Through the Use of Stoppers. Energies, 18(22), 6007. https://doi.org/10.3390/en18226007

