Assessing the Viability of Rooftop Solar PV in Energy-Intensive Industries: A Techno-Economic and Safety Framework for the Indonesian FMCG Sector
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Assessment
2.2. Analysis of Electricity Consumption
- -
- Capital Expenditure: Rp 8,500,000 per kilowatt-peak (total about Rp 5.09 billion for 599 kilowatt-peak).
- -
- Operational Expenditure: Rp 80,000 per kWp annually (about Rp 47.9 million per year).
- -
- Annual inflation rate: 3% (average from Bank Indonesia, 2020–2024).
- -
- Module degradation: 0.5–0.7% year (according to IEC 61724-2 and IEA PVPS data) [27].
- -
- Operational lifespan: 25 years.
- -
- Tariff benchmark: Rp 1444.70/kWh (PLN unsubsidized 2024).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PV | Photovoltaic |
| FMCG | Fast-Moving Consumer Goods |
| COS | Change Over Switch |
| STS | Static Transfer Switch |
| FCU | Fan Coil Unit |
| PMM | Between the axial force (P) and the bending moment (M) |
| LCOE | Levelized Cost of Energy |
| ROI | Return on Investment |
| HIRA | Hazard Identification and Risk Assessment |
| SOP | Standard Operating Procedure |
| OSH | Occupational Safety and Health |
| PPE | Personal Protective Equipment |
| DC | Direct Current |
| AC | Alternating Current |
| HIRADC | Hazard Identification, Risk Assessment, and Determining Control |
References
- International Energy Agency (IEA). Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 26 April 2025).
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar Photovoltaics Is Ready to Power a Sustainable Future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Veldhuis, A.J.; Reinders, A.H.M.E. Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level. Renew. Sustain. Energy Rev. 2013, 27, 315–324. [Google Scholar] [CrossRef]
- Government of Indonesia. Presidential Regulation No. 79/2014 on National Energy Policy; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2014; Available online: https://jdih.esdm.go.id/index.php/web/result/1819/detail (accessed on 9 May 2025).
- International Energy Agency (IEA). World Energy Balances 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-balances-overview (accessed on 20 May 2025).
- Ladha-Sabur, A.; Bakalis, S.; Fryer, P.J.; Lopez-Quiroga, E. Mapping energy consumption in food manufacturing. Trends Food Sci. Technol. 2019, 86, 270–280. [Google Scholar] [CrossRef]
- Wardle, J.M.; Fischer, A.; Tesfaye, Y.; Smith, J. Seasonal variability of resources: The unexplored adversary of biogas use in rural Ethiopia. Curr. Res. Environ. Sustain. 2021, 3, 100072. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Prasath Kumar, V.R.; Krishnaraj, L. Emerging technology trends in the C&I rooftop solar market in India: Case study on datacentre–Retrofit with BIPV by U-Solar. Solar Energy 2022, 238, 203–215. [Google Scholar] [CrossRef]
- Coglan, J.; Gharineiat, Z.; Kurdi, F.T. Automatic Rooftop Solar Panel Recognition from UAV LiDAR Data Using Deep Learning and Geometric Feature Analysis. Remote Sens. 2025, 17, 3389. [Google Scholar] [CrossRef]
- Rigo, P.D.; Siluk, J.C.M.; Lacerda, D.P.; Rediske, G.; Rosa, C.B. The competitiveness factors of photovoltaic installers companies and a BSC model. Solar Energy 2022, 235, 36–49. [Google Scholar] [CrossRef]
- Rababah, H.E.; Ghazali, A.; Isa, M.H.M. Building Integrated Photovoltaic (BIPV) in Southeast Asian Countries: Review of Effects and Challenges. Sustainability 2021, 13, 12952. [Google Scholar] [CrossRef]
- IEC 31010:2019; Risk Management—Risk Assessment Techniques. IEC: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/72140.html (accessed on 2 June 2025).
- Ghaleb, B.; Asif, M. Application of solar PV in commercial buildings: Utilizability of rooftops. Energy Build. 2022, 257, 111774. [Google Scholar] [CrossRef]
- Galvis, F.A.; Smith-Pardo, J. Axial load biaxial moment interaction (PMM) diagrams for shallow foundations: Design aids, experimental verification, and examples. Eng. Struct. 2020, 213, 110582. [Google Scholar] [CrossRef]
- Neumüller, A.; Geier, S.; Österreicher, D. Life Cycle Assessment for Photovoltaic Structures—Comparative Study of Rooftop and Free-Field PV Applications. Sustainability 2023, 15, 13692. [Google Scholar] [CrossRef]
- Ndwali, K.; Njiri, J.G.; Wanjiru, E.M. Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy. Renew. Energy 2020, 148, 1256–1265. [Google Scholar] [CrossRef]
- Predescu, D.-M.; Roșu, Ș.-G. Solid State Transformers: A Review—Part I: Stages of Conversion and Topologies. Technologies 2025, 13, 74. [Google Scholar] [CrossRef]
- Mah, D.N.; Wang, G.; Lo, K.; Leung, M.K.H.; Hills, P.; Lo, A.Y. Barriers and policy enablers for solar photovoltaics (PV) in cities: Perspectives of potential adopters in Hong Kong. Renew. Sustain. Energy Rev. 2018, 92, 921–936. [Google Scholar] [CrossRef]
- Brown, M.A.; Hubbs, J.; Gu, V.X.; Cha, M.-K. Rooftop Solar for All: Closing the Gap Between the Technically Possible and the Achievable. Energy Res. Soc. Sci. 2021, 80, 102203. [Google Scholar] [CrossRef]
- Yao, H.; Zhou, Q. Research status and application of rooftop photovoltaic generation systems. Clean. Energy Syst. 2023, 5, 100065. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, Y.; Qu, Z. Proper interpretation of sectional analysis results. Earthquake Res. Adv. 2024, 4, 100238. [Google Scholar] [CrossRef]
- Computers and Structures Inc. SAP2000 Integrated Software for Structural Analysis and Design, Version 23; CSI: Berkeley, CA, USA, 2021; Available online: https://www.csiamerica.com/products/sap2000 (accessed on 13 June 2025).
- Nugroho, W.O.; Sagara, A.; Imran, I. The evolution of Indonesian seismic and concrete building codes: From the past to the present. Structures 2022, 41, 1092–1108. [Google Scholar] [CrossRef]
- Pinheiro, M.G.; Madeira, S.C.; Francisco, A.P. Short-term electricity load forecasting—A systematic approach from system level to secondary substations. Appl. Energy 2023, 332, 120493. [Google Scholar] [CrossRef]
- Alexander, S.A. Development of solar photovoltaic inverter with reduced harmonic distortions suitable for Indian sub-continent. Renew. Sustain. Energy Rev. 2016, 56, 694–704. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Economic Analysis of a Photovoltaic System: A Resource for Residential Households. Energies 2017, 10, 814. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Langer, J.; Kwee, Z.; Zhou, Y.; Isabella, O.; Ashqar, Z.; Quist, J.; Praktiknjo, A.; Blok, K. Geospatial analysis of Indonesia’s bankable utility-scale solar PV potential using elements of project finance. Energy 2023, 283, 128555. [Google Scholar] [CrossRef]
- Sunaryo; Hamka, M.A. Safety Risks Assessment on Container Terminal Using Hazard Identification and Risk Assessment and Fault Tree Analysis Methods. Procedia Eng. 2017, 194, 307–314. [Google Scholar] [CrossRef]
- Duroha, J.C.; Macht, G.A. Solar installation occupational risks: A systematic review. Saf. Sci. 2023, 160, 106048. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Ban, Y.; Ma, X.; Hao, C.; Zhou, J.; Cai, H. A DC Arc Fault Detection Method Based on AR Model for Photovoltaic Systems. Appl. Sci. 2022, 12, 10379. [Google Scholar] [CrossRef]
- Government of Indonesia. Law No. 30/2007 on Energy; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2007; Available online: https://jdih.esdm.go.id (accessed on 2 July 2025).
- Mincigrucci, L.; Civera, M.; Lenticchia, E.; Ceravolo, R.; Rosano, M.; Russo, S. Comparative Structural Analysis of GFRP, Reinforced Concrete, and Steel Frames under Seismic Loads. Materials 2023, 16, 4908. [Google Scholar] [CrossRef]
- Maidi, M.; Shufrin, I. Evaluation of Existing Reinforced Concrete Buildings for Seismic Retrofit through External Stiffening: Limit Displacement Method. Buildings 2024, 14, 2781. [Google Scholar] [CrossRef]
- ASCE. Structural Condition Assessment of Existing Buildings. ASCE Manuals and Reports on Engineering Practice No. 158. American Society of Civil Engineers. 2024. Available online: https://ascelibrary.org/doi/epdf/10.1061/9780784485422.fm (accessed on 5 July 2025).
- Mokhtari, M.; Islam, A.; Imanpour, A. Comparison of the Seismic Performance of Steel Moment-Resisting Frames and Moment-Resisting Knee Braced Frames. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021; Lecture Notes in Civil Engineering; Springer : Berlin/Heidelberg, Germany, 2022; Volume 240, Available online: https://link.springer.com/chapter/10.1007/978-981-19-0507-0_25 (accessed on 3 May 2025).
- Lazaroiu, A.C.; Osman, M.G.; Strejoiu, C.V.; Lazaroiu, G. A Comprehensive Overview of Photovoltaic Technologies and Their Efficiency for Climate Neutrality. Sustainability 2023, 15, 16297. [Google Scholar] [CrossRef]
- Zdyb, A.; Sobczyński, D. An Assessment of a Photovoltaic System’s Performance Based on the Measurements of Electric Parameters under Changing External Conditions. Energies 2024, 17, 2197. [Google Scholar] [CrossRef]
- Thanikanti, S.B.; Yousri, D.; Allam, D.; Etebia, M.B.; Balasubramanian, K. Converter/Inverter Topologies for Standalone and Grid-Connected PV Systems. In Renewable Energy and Future Power Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–80. Available online: https://link.springer.com/chapter/10.1007/978-981-33-6753-1_2 (accessed on 28 May 2025).
- Díaz-Bello, D.; Vargas-Salgado, C.; Águila-León, J.; Lara-Vargas, F. Methodology to Estimate the Impact of the DC to AC Power Ratio, Azimuth, and Slope on Clipping Losses of Solar Photovoltaic Inverters: Application to a PV System Located in Valencia, Spain. Sustainability 2023, 15, 2797. [Google Scholar] [CrossRef]
- Silalahi, D.F.; Blakers, A.; Stocks, M.; Lu, B.; Cheng, C.; Hayes, L. Indonesia’s Vast Solar Energy Potential. Energies 2021, 14, 5424. [Google Scholar] [CrossRef]
- Ludin, N.A.; Affandi, N.A.A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M.A.; Sopian, K.; Jusoh, S. Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach. Sustainability 2021, 13, 396. [Google Scholar] [CrossRef]
- Kamenopoulos, S.N.; Tsoutsos, T. Assessment of the safe operation and maintenance of photovoltaic systems. Energy 2015, 93, 1633–1638. [Google Scholar] [CrossRef]
- Kineber, A.F.; Antwi-Afari, M.F.; Elghaish, F.; Zamil, A.M.A.; Alhusban, M.; Qaralleh, T.J.O. Benefits of Implementing Occupational Health and Safety Management Systems for the Sustainable Construction Industry: A Systematic Literature Review. Sustainability 2023, 15, 12697. [Google Scholar] [CrossRef]
- Marhavilas, P.K.; Pliaki, F.; Koulouriotis, D. International Management System Standards Related to Occupational Safety and Health: An Updated Literature Survey. Sustainability 2022, 14, 13282. [Google Scholar] [CrossRef]
- Başaran, K.; Özdemir, M.T.; Bayrak, G. Sizing and Techno-Economic Analysis of Utility-Scale PV Systems with Energy Storage Systems in Factory Buildings: An Application Study. Appl. Sci. 2025, 15, 3876. [Google Scholar] [CrossRef]
- Cristea, M.; Cristea, C.; Tîrnovan, R.-A.; Șerban, F.M. Levelized Cost of Energy (LCOE) of Different Photovoltaic Technologies. Appl. Sci. 2025, 15, 6710. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Lopes, E.B.; Santos, J.B.; Monteiro, J.; Cabrita, C.; Pacheco, A. Comparative Viability of Photovoltaic Investments Across European Countries Using Payback Periods and the Levelized Cost of Energy. Energies 2025, 18, 4676. [Google Scholar] [CrossRef]
- Naspolini, H.F.; Rüther, R. Impacts of the active power demand measurement-time resolution on the financial attractiveness of domestic solar hot water systems. Renew. Energy 2019, 139, 336–345. [Google Scholar] [CrossRef]
- IRENA (2024). Renewable Power Generation Costs in 2023. International Renewable Energy Agency. Available online: https://www.irena.org/Publications/2024/Sep/Renewable-Power-Generation-Costs-in-2023 (accessed on 7 June 2025).
- Pu, Y.; Wang, P.; Wang, Y.; Qiao, W.; Wang, L.; Zhang, Y. Environmental effects evaluation of photovoltaic power industry in China on life cycle assessment. J. Clean. Prod. 2021, 278, 123993. [Google Scholar] [CrossRef]
- Seklecki, K.; Olesz, M.; Adamowicz, M.; Nowak, M.; Litzbarski, L.S.; Balcarek, K.; Grochowski, J. A Comprehensive System for Protection of Photovoltaic Installations in Normal and Emergency Conditions. Energies 2025, 18, 1749. [Google Scholar] [CrossRef]
- Almaskati, D.; Kermanshachi, S.; Pamidimukkala, A.; Loganathan, K.; Yin, Z. A Review on Construction Safety: Hazards, Mitigation Strategies, and Impacted Sectors. Buildings 2024, 14, 526. [Google Scholar] [CrossRef]
- Shahverdian, M.H.; Najaftomaraei, M.; Chimeh, A.F.; Yavarzadeh, N.; Sohani, A.; Javadijam, R.; Sayyaadi, H. Towards Zero-Energy Buildings: A Comparative Techno-Economic and Environmental Analysis of Rooftop PV and BIPV Systems. Buildings 2025, 15, 999. [Google Scholar] [CrossRef]
- Tu, R.; Guo, Z.; Liu, L.; Wang, S.; Yang, X. Reviews of Photovoltaic and Energy Storage Systems in Buildings for Sustainable Power Generation and Utilization from Perspectives of System Integration and Optimization. Energies 2025, 18, 2683. [Google Scholar] [CrossRef]
- Ciocia, A.; Amato, A.; Di Leo, P.; Fichera, S.; Malgaroli, G.; Spertino, F.; Tzanova, S. Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation. Energies 2021, 14, 1591. [Google Scholar] [CrossRef]
- Migliari, L.; Cocco, D.; Petrollese, M. Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation. Energies 2025, 18, 3602. [Google Scholar] [CrossRef]
- Hamzaoğlu, A.; Erduman, A.; Kırçay, A. Deep Learning-Based Rooftop PV Detection and Techno Economic Feasibility for Sustainable Urban Energy Planning. Sustainability 2025, 17, 6853. [Google Scholar] [CrossRef]
- Deshmukh, R.; Wang, L.; Kammen, D.M. Geospatial and techno-economic analysis of wind and solar co-location potential to meet electricity demand. Renew. Energy 2019, 136, 253–267. [Google Scholar] [CrossRef]
- Pramadya, F.A.; Kim, K.N. Promoting residential rooftop solar photovoltaics in Indonesia: Net-metering or installation incentives? Renew. Energy 2024, 222, 119901. [Google Scholar] [CrossRef]
- Pambudi, N.A.; Ulfa, D.K.; Nanda, I.R.; Gandidi, I.M.; Wiyono, A.; Biddinika, M.K.; Rudiyanto, B.; Saw, L.H. The Future of Wind Power Plants in Indonesia: Potential, Challenges, and Policies. Sustainability 2025, 17, 1312. [Google Scholar] [CrossRef]
- Patil, R.B.; Khalkar, A.; Al-Dahidi, S.; Pimpalkar, R.S.; Bhandari, S.; Pecht, M. A Reliability and Risk Assessment of Solar Photovoltaic Panels Using a Failure Mode and Effects Analysis Approach: A Case Study. Sustainability 2024, 16, 4183. [Google Scholar] [CrossRef]
- Lee, B.; Trčka, M.; Hensen, J.L.M. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand. Front. Archit. Res. 2012, 1, 326–333. [Google Scholar] [CrossRef]
- Fakhraian, E.; Alier, M.; Valls Dalmau, F.; Nameni, A.; Casañ Guerrero, M.J. The Urban Rooftop Photovoltaic Potential Determination. Sustainability 2021, 13, 7447. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]














| Period (Average) | Electricity Usage (kWh) | ||
|---|---|---|---|
| Chiller | Lightning | Incoming COS | |
| Daily | 4648 | 2333.83 | 6981.83 |
| Weekly | 32,536 | 16,336.81 | 48,872.81 |
| Monthly | 139,440 | 70,014.9 | 209,454.9 |
| No. | Structure/Building Section | Condition Before Reinforcement | Reinforcement Method | Reinforced Elements | Additional Notes |
|---|---|---|---|---|---|
| 1 | Structure 4 | Several elements showed PMM Ratio approaching limit (1.0) | Addition of supplementary structural elements | Primary columns and beams | PMM Ratio after reinforcement < 1.0 (safe condition) |
| 2 | Structure 6 | Deformation approaching safety threshold | Structural design adjustments | Beams and connecting joints | Max deformation 76.6 mm, below L/240 limit of 108.33 mm |
| 3 | Structure 9—Area A | Main vertical elements lacked adequate support | Column strengthening | Vertical main columns | Indicated in the diagram as Area A |
| 4 | Structure 9—Area B | Mid-span beams required additional rigidity | Beam reinforcement | Horizontal central beams | Indicated in the diagram as Area B |
| 5 | Structure 9—Area C | Inadequate stiffness under added load | Addition of a truss or frame system | Supplementary structural frames | Indicated in the diagram as Area C |
| 6 | Critical points (various) | Weak connection joints under solar panel loads | Installation of knee braces (WF200 × 100) and angle profiles (2L 60 × 60 × 6) | Beam-column joints and horizontal/diagonal members | Reinforcement points are marked in red circles in the simulation diagrams |
| Inverter Name | Model | Type | Capacity | Main Features | Number of Units |
|---|---|---|---|---|---|
| Smart PV Controller | SUN2000-150K-MG0 | Inverter On-Grid | 150 kW | AI-Powered Arc Protection, Smart I–V Curve Diagnosis, Support 1 + X Inverter | 1 unit |
| Smart PV Controller | SUN2000-50KTL-M3 | Inverter On-Grid | 50 kW | PID Recovery, AFCI Function, Smart Monitoring | 1 unit |
| String Inverter | SG110CX | Multi-MPPT | 110 kW | High Efficiency (Max 98.6%), Smart O&M, IP66 Protection, Type II SPD | 3 unit |
| Self-Consumption Ratio | Self-Consumed Energy (kWh/yr) | Coverage of Utility Load (%) | Gross Savings (Rp/yr) | Net Savings After OPEX (Rp/yr) |
|---|---|---|---|---|
| 85% | 802,630 | 31.9% | 1,160,994,161 | 1,113,094,161 |
| 90% | 849,844 | 33.8% | 1,227,323,197 | 1,179,423,197 |
| 95% | 897,057 | 35.7% | 1,293,652,232 | 1,245,752,232 |
| 100% | 944,271 | 37.6% | 1,359,981,268 | 1,312,081,268 |
| Study | Scope | Structural Analysis | Economic Evaluation | Safety/HSE Evaluation | Case Context | Key Findings |
|---|---|---|---|---|---|---|
| Singh [8] | PV adoption in India | Not included | Economic Feasibility | No HSE | Industrial | Focused on economic benefits; no discussion on structure or safety |
| Coglan et al. [9] | Rooftop PV performance | Roof material & geometry | No economic analysis | No HSE | Commercial | Roof geometry impacts performance; structural focus only |
| Rababah et al. [11] | PV for Indonesian factories | No PMM ratio | Techno-economic | No HSE | Industrial (Indonesia) | Evaluated financial feasibility; structural & safety not analyzed |
| This study (2025) | FMCG rooftop PV in Indonesia | PMM structural ratio & reinforcement plan | LCOE, ROI, Payback & sensitivity | HIRA-based risk mitigation aligned with ISO & IEC | Energy-intensive FMCG factory | Integrated framework ensuring structural safety, high economic return, and safe execution in a tropical industrial context |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galevien, A.P.; Ridwan, M.K.; Wardana, A.N.I. Assessing the Viability of Rooftop Solar PV in Energy-Intensive Industries: A Techno-Economic and Safety Framework for the Indonesian FMCG Sector. Energies 2025, 18, 5859. https://doi.org/10.3390/en18215859
Galevien AP, Ridwan MK, Wardana ANI. Assessing the Viability of Rooftop Solar PV in Energy-Intensive Industries: A Techno-Economic and Safety Framework for the Indonesian FMCG Sector. Energies. 2025; 18(21):5859. https://doi.org/10.3390/en18215859
Chicago/Turabian StyleGalevien, Almaaidah Puri, Mohammad Kholid Ridwan, and Awang Noor Indra Wardana. 2025. "Assessing the Viability of Rooftop Solar PV in Energy-Intensive Industries: A Techno-Economic and Safety Framework for the Indonesian FMCG Sector" Energies 18, no. 21: 5859. https://doi.org/10.3390/en18215859
APA StyleGalevien, A. P., Ridwan, M. K., & Wardana, A. N. I. (2025). Assessing the Viability of Rooftop Solar PV in Energy-Intensive Industries: A Techno-Economic and Safety Framework for the Indonesian FMCG Sector. Energies, 18(21), 5859. https://doi.org/10.3390/en18215859

