Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks
Abstract
1. Introduction
2. Materials and Methods
- Processor: 13th Gen Intel(R) Core (TM) i7-13650HX 2.60 GHz (Intel, Santa Clara, CA, USA);
- System type: 64-bit operating system;
- Installed RAM: 64.0 GB;
- Graphics card: nVidia RTX4050 (NVIDIA Corporation, Santa Clara, CA, USA).
3. Results
3.1. Route Optimization
3.1.1. Route—Pelotas Region

| Stop (Un.) | Weight (Kg) | Boxes Stop (Un.) | Km Driven (Km) | Cubage (m3) | Delivery Time (h) |
|---|---|---|---|---|---|
| 1 | 265.87 | 21 | 76.44 | 22.40 | 01:28 |
| 2 | 14.16 | 3 | 0.48 | 0.2 | 00:06 |
| 3 | 91.49 | 8 | 0.56 | 6.90 | 00:05 |
| 4 | 120.38 | 10 | 1.05 | 9.14 | 00:10 |
| ⁝ | ⁝ | ⁝ | ⁝ | ⁝ | |
| 16 | 109.56 | 14 | 1.21 | 8.8 | 00:07 |
| 17 | 119.48 | 6 | 1.13 | 9.2 | 00:04 |
| Total | 4249.03 | 365 | 158.36 | 223.98 | 4:31 |
- Perform the route with two electric trucks for 1 route/day;
- Perform the route with one electric truck with a greater load capacity;
- Perform the route with one electric truck for 2 routes/day. It is observed that the planned kilometers would reach the autonomy limit, running the risk of the electric truck not being able to complete the proposed route.
3.1.2. Route—Lajeado Region

| Stop (Un.) | Weight (Kg) | Boxes Stop (Un.) | Km Driven (Km) | Cubage (m3) | Delivery Time (h) |
|---|---|---|---|---|---|
| 1 | 3203.59 | 315 | 1.29 | 271.36 | 01:02 |
| 2 | 1130.4 | 48 | 1.77 | 99.98 | 00:16 |
| 3 | 98.14 | 7 | 14.16 | 7.99 | 00:24 |
| 4 | 524.04 | 34 | 1.29 | 39.52 | 00:13 |
| ⁝ | ⁝ | ⁝ | ⁝ | ⁝ | |
| 9 | 266.4 | 20 | 4.43 | 20 | 00:10 |
| 10 | 137.86 | 11 | 11.59 | 10.38 | 00:22 |
| ⁝ | ⁝ | ⁝ | ⁝ | ⁝ | |
| 17 | 154.96 | 18 | 1.85 | 12.27 | 00:08 |
| 18 | 1058.9 | 74 | 18.11 | 89.82 | 00:37 |
| Total | 7318.26 | 621 | 66.39 | 633.16 | 04:18 |
- Perform the route with two electric trucks for 1 route/day;
- Perform the route with one electric truck with a higher load capacity;
- Perform the route using one electric truck for 2 routes/day, including a return to the distribution center to reload products. It noted that only a logistical adjustment can make it possible to provide customer service.
3.2. Operational Feasibility of Fleet Replacement
Truck in Operation
3.3. Expense Analysis
3.3.1. Mitigation Cost
3.3.2. Fleet Replacement Proposal
Santo Ângelo Distribution Center
Caxias Do Sul Distribution Center
Pelotas Distribution Center
Canoas Distribution Center
Lajeado Headquarters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Jurado, F.; Tostado-Véliz, M.; Arevalo, P. Decarbonization of the galapagos islands. proposal to transform the energy system into 100% renewable by 2050. Renew. Energy 2022, 189, 199–220. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- Silva, V.; Amaral, A.; Fontes, T. Sustainable Urban Last-Mile Logistics: A Systematic Literature Review. Sustainability 2023, 15, 2285. [Google Scholar] [CrossRef]
- Pozo, H. Logistics and Supply Chain Management—An Introduction, 2nd ed.; Atlas: Fayetteville, NC, USA, 2019; ISBN 978-85-97-02321-3. Available online: https://www.google.com.br/books/edition/Log%C3%ADstica_e_gerenciamento_da_cadeia_de/b9VEtAEACAAJ?hl=pt-BR (accessed on 10 March 2025).
- Ballou, R. Supply Chain Management: Business Logistics, 5th ed.; Bookman: Porto Alegre, Brazil, 2006; 616p, Available online: https://www.google.com.br/books/edition/Gerenciamento_da_Cadeia_de_Suprimentos_5/QAHrq0r6E7cC?hl=pt-BR&gbpv=1&dq=5.+Pozo,+H.+Log%C3%ADstica+e+gerenciamento+da+cadeia+de+suprimentos+%E2%80%93+uma+introdu%C3%A7%C3%A3o,+2%C2%AA+ed.%3B+Atlas:+Fayetteville,+NC,+EUA,+2019.+ISBN:+978-85-97-02321-3.+S%C3%A3o+Paulo.&printsec=frontcover (accessed on 12 November 2024).
- Ren, R.; Hu, W.; Dong, J.; Sun, B.; Chen, Y.; Chen, Z. A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy. Int. J. Environ. Res. Public Health 2020, 17, 261. [Google Scholar] [CrossRef]
- Patella, S.M.; Grazieschi, G.; Gatta, V.; Marcucci, E.; Carrese, S. The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review. Sustainability 2020, 13, 6. [Google Scholar] [CrossRef]
- Iwan, S.; Allesch, J.; Celebi, D.; Kijewska, K.; Hoé, M.; Klauenberg, J.; Zajicek, J. Electric mobility in European urban freight and logistics—Status and attempts of improvement. Transp. Res. Procedia 2019, 39, 112–123. [Google Scholar] [CrossRef]
- Erdelić, T.; Carić, T. A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. J. Adv. Transp. 2019, 2019, 48. [Google Scholar] [CrossRef]
- Juan, A.A.; Mendez, C.A.; Faulin, J.; De Armas, J.; Grasman, S.E. Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic and Operating Challenges. Energies 2016, 9, 86. [Google Scholar] [CrossRef]
- Jacinto, T.; Dias, B.; Ramos, T.; Marcato, A.; Silva, I.; Oliveira, L.; Borba, B. Impact of Electric Vehicles in Electric Costs considering the Long-term Operation Planning. In Proceedings of the 2018—Brazilian Symposium on Electrical Systems (SBSE), Niterói, Brazil, 12–16 May 2018; IEEE: Piscataway, NJ, USA, 2018. Electronic ISBN: 978-1-5386-3363-2. [Google Scholar] [CrossRef]
- Rüdisüli, M.; Bach, C.; Bauer, C.; Beloin-Saint-Pierre, D.; Elber, U.; Georges, G.; Limpach, R.; Pareschi, G.; Kannan, R.; Teske, S.L. Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options. Appl. Energy 2022, 306, 118065. [Google Scholar] [CrossRef]
- Li, Z.; Khajepour, A.; Song, J. A comprehensive review of the key technologies for pure electric vehicles. Energy 2019, 182, 824–839. [Google Scholar] [CrossRef]
- Khamphilavanh, B.; Masui, T. Scenario-Based Analysis of Electric Vehicle Penetration in Road Transportation in Laos. In Proceedings of the International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE), Pattaya, Thailand, 20–22 October 2020. [Google Scholar] [CrossRef]
- Englberger, S.; Gamra, K.A.; Tepe, B.; Schreiber, M.; Jossen, A.; Hesse, H. Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context. Appl. Energy 2021, 304, 117862. [Google Scholar] [CrossRef]
- Alesiani, F.; Maslekar, N. Optimization of Charging Stops for Fleet of Electric Vehicles: A Genetic Approach. IEEE Intell. Transp. Syst. Mag. 2014, 6, 10–21. [Google Scholar] [CrossRef]
- Formigoni, A.; Fernandes, M.E.; de Oliveira, M.A.M.; Martino, M.A.; Faustino, R.P. Using operations research techniques to measure the efficiency of routing software. SADSJ S. Am. Dev. Soc. J. 2016, 2, 14–26. Available online: http://sadsj.org/index.php/revista/article/view/36/35 (accessed on 10 March 2025).
- Berhorst, N.; Grauer, A.F.; Neuffer, D.; Schmitz, A.P. Matriz Energética Mais Limpa: Sugestão de Reestruturação para o Parque Gerador Brasileiro a Partir de Índices Econômicos Energéticos; Federal University of Paraná: Curitiba, PR, Brazil, 2018; pp. 66–91. Available online: https://www.researchgate.net/profile/Paulo-Zannin/publication/342452763_CHAPTER_9_-_BOOK_MAUI_-_2018_-_Urban_and_Industrial_Environment_-_AVALIACAO_DO_RUIDO_DE_TRAFEGO_EM_ESTACOES_-_TUBO_PARA_AS_DIFERENTES_AREAS_DE_ZONEAMENTO_DA_CIDADE_DE_CURITIBA/links/5ef4fcf092851c52d6fdb5ee/CHAPTER-9-BOOK-MAUI-2018-Urban-and-Industrial-Environment-AVALIACAO-DO-RUIDO-DE-TRAFEGO-EM-ESTACOES-TUBO-PARA-AS-DIFERENTES-AREAS-DE-ZONEAMENTO-DA-CIDADE-DE-CURITIBA.pdf (accessed on 20 November 2024).
- Dallepiane, P.; Canha, L.N.; Flesch, C.H.; Cambambi, C.A.C. Energy Security and Sustainability in the Replacement of Combustion Vehicles with Electric Vehicles and Public Institutions. SBSE 2020 Braz. Symp. Electr. Syst. 2020, 2, SBSE2022. Available online: https://www.sba.org.br/open_journal_systems/index.php/sbse/article/view/3158 (accessed on 10 April 2024).
- BRASIL. Law No. 10,848, of 15 March 2004. 2004. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.848.htm (accessed on 10 March 2025).
- BRASIL. Decree No. 5,163 of 30 July 2004. 2004. Available online: http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/D5163.htm (accessed on 10 March 2025).
- Silva, V. Development and Regulation of the Free Energy Market in Brazil. Master’s Dissertation, Federal University of Santa Maria, Santa Maria, RS, Brazil, 2017. [Google Scholar]
- ANEEL—National Electric Energy Agency. Normative Resolution No. 1,000, of 7 December 2021. Available online: https://www2.aneel.gov.br/cedoc/ren2021954.html (accessed on 12 November 2024).
- Câmera de Comercialização de Energia Elétrica—CCEE. Capacity CCEE Learning Portal. 2020. Available online: https://academy.ccee.org.br/auth/signin (accessed on 10 April 2025).
- FRUKI. Beverage Company. 2023. Available online: https://www.fruki.com.br/ (accessed on 10 April 2024).
- JAC Motors. Electric Truck iEV1200T. 2024. Available online: https://www.jacmotors.com.br/veiculos/eletricos-detalhes/iev1200t (accessed on 10 May 2025).
- Schneider Electric. WALLBOX Basic—7,4 kW—Cable T2. 2025. Available online: https://www.se.com/br/pt/product/EVB1A7PCRI/carregador-veicular-evlink-smart-wallbox-74-kw-cabo-t2-acoplado-rfid/ (accessed on 10 October 2025).
- FIPE—Foundation Institute of Economic Research. Vehicle Price Table. 2025. Available online: https://veiculos.fipe.org.br/ (accessed on 12 March 2025).
- MMA—Ministry of the Environment. National Inventory of Atmospheric Emissions by Road Motor Vehicles 2013: Base Year 2012; MMA: Brasília, DF, Brazil, 2013. Available online: https://www.gov.br/mma/pt-br/assuntos/meio-ambiente-urbano-recursos-hidricos-qualidade-ambiental/qualidade-do-ar/repositorio/grupo-de-trabalho-inventario-nacional-de-emissoes-atmosfericas-por-veiculos-automotores-rodoviarios/inventario_de_emissoes_por_veiculos_rodoviarios_2013.pdf (accessed on 10 March 2024).
- CPFL Energy. Secondary Distribution Voltage Supply—GED 13. Norma Técnica. 2020. Available online: https://sites.cpfl.com.br/documentos-tecnicos/GED-13.pdf (accessed on 10 March 2025).
- BRASIL. Ordinance No. 465, of 12 December 2019. 2019. Available online: http://www2.aneel.gov.br/cedoc/prt2019465mme.pdf (accessed on 30 March 2024).
- Nascimento, K. Migration to the Free Energy Market and Change in Hourly Rates: Case Study in an Industry. 62 p. Monograph, 2018; Federal University of Rio de Janeiro: Rio de Janeiro, RJ, Brazil, 2018; Available online: http://repositorio.poli.ufrj.br/monografias/monopoli10027710.pdf (accessed on 10 May 2025).
- Borlaug, B.; Yang, F.; Pritchard, E.; Wood, E.; Gonder, J. Public electric vehicle charging station utilization in the United States. Transp. Res. Part D Transp. Environ. 2023, 114, 103564. [Google Scholar] [CrossRef]
- D’Agosto, M.A.; Marujo, L.G. Guide to Excellence in Sustainability: Best Practices for Logistics and Freight Transportation, 4th ed.; Brazilian Institute of Sustainable Transportation (IBTS): Rio de Janeiro, RJ, Brazil, 2024; Available online: https://plvb.org.br/wp-content/uploads/2024/09/Guia-de-Excelencia-Edicao-4.pdf (accessed on 10 March 2025).
- Huang, Y.; Lei, C.; Liu, C.-H.; Perez, P.; Forehead, H.; Kong, S.; Zhou, J.L. A review of strategies for mitigating roadside air pollution in urban street canyons. Environ. Pollut. 2021, 280, 116971. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.F.; Burguillo, M.; Arranz, J.M. Low emission zones: Effects on alternative-fuel vehicle uptake and fleet CO2 emissions. Transp. Res. Part D Transp. Environ. 2021, 95, 102882. [Google Scholar] [CrossRef]
- PNME—National Electric Mobility Platform. 3rd Brazilian Yearbook of Electric Mobility: Towards market expansion, policies and technologies in Brazil, 2025, Brasília. Available online: https://pnme.org.br/biblioteca/3o-anuario-brasileiro-da-mobilidade-eletrica-pnme/ (accessed on 2 October 2025).
- Shao, S.; Guan, W.; Bi, J. Electric vehicle-routing problem with charging demands and energy consumption. IET Intell. Transp. Syst. 2018, 12, 202–212. [Google Scholar] [CrossRef]
- Baldissera, L.B. Analysis of the Impact of the Use of Public Electric Transport on the Electric Distribution System. Master’s Dissertation, Federal University of Santa Maria, Santa Maria, RS, Brazil, 2016. [Google Scholar]
- Mitropoulos, L.; Kortsari, A.; Mizaras, V.; Ayfantopoulou, G. Mobility as a Service (MaaS) Planning and Implementation: Challenges and Lessons Learned. Future Transp. 2023, 3, 498–518. [Google Scholar] [CrossRef]
- Barco, J.; Guerra, A.; Muñoz, L.; Quijano, N. Optimal Routing and Scheduling of Charge for Electric Vehicles: A Case Study. Math. Probl. Eng. 2017, 2017, 8509783. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Li, T. Optimization of logistics route based on Dijkstra. In Proceedings of the 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 September 2015; pp. 313–316. [Google Scholar]


| Test (Un) | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Routes | Lajeado | Lajeado | Estrela | Lajeado | Lajeado/Estrela/ Cruzeiro |
| Km Road | 29.93 | 18.11 | 28.16 | 31.06 | 45.46 |
| Weight (Kg) | 3372.14 | 3168.17 | 3281.18 | 3345.55 | 3385.30 |
| Deliveries | 15 | 15 | 16 | 23 | 20 |
| km Traveled | 55 | 40 | 51 | 45 | 88 |
| Used Battery | 39% | 31% | 30% | 33% | 50% |
| Truck Data | Combustion Model | Electric Model | ||||
|---|---|---|---|---|---|---|
| Un | Region | Total km Driven | Supply | Consumption Average | Recharges | Consumption Average |
| km Driven | km Driven | |||||
| Annual | DIESEL—R$ | km/L | Electricity—R$ | km/kWh | ||
| 1 | Headquarters | 7908 | R$ 14,179.07 | 3.43 | R$ 1650.70 | 2.06 |
| 2 | Headquarters | 27,122 | R$ 40,683.00 | 4.1 | R$ 5661.39 | 2.06 |
| 3 | Headquarters | 44,719 | R$ 74,330.23 | 3.7 | R$ 9334.55 | 2.06 |
| 4 | Headquarters | 45,279 | R$ 80,949.38 | 3.44 | R$ 9451.44 | 2.06 |
| 5 | Headquarters | 33,463 | R$ 64,311.70 | 3.2 | R$ 6985.00 | 2.06 |
| 6 | Headquarters | 39,287 | R$ 69,830.94 | 3.46 | R$ 8200.68 | 2.06 |
| 7 | Headquarters | 17,925 | R$ 24,389.10 | 4.52 | R$ 3741.63 | 2.06 |
| 8 | Headquarters | 29,409 | R$ 37,446.24 | 4.83 | R$ 6138.77 | 2.06 |
| 9 | Headquarters | 34,294 | R$ 59,578.56 | 3.54 | R$ 7158.46 | 2.06 |
| 10 | Headquarters | 33,569 | R$ 58,154.75 | 3.55 | R$ 7007.12 | 2.06 |
| 11 | Headquarters | 33,013 | R$ 53,149.20 | 3.82 | R$ 6891.06 | 2.06 |
| 12 | Headquarters | 38,527 | R$ 44,123.10 | 5.37 | R$ 8042.04 | 2.06 |
| 13 | Headquarters | 24,743 | R$ 44,755.72 | 3.4 | R$ 5164.80 | 2.06 |
| 14 | Headquarters | 21,092 | R$ 42,529.77 | 3.05 | R$ 4402.70 | 2.06 |
| 15 | Headquarters | 46,400 | R$ 55,517.51 | 5.14 | R$ 9685.44 | 2.06 |
| Total | 476,750 | R$ 751,798.08 | 3.9 | R$ 99,515.78 | 2.06 | |
| Region | Costs (R$) | CoM (R$. kgCO2) |
|---|---|---|
| Santo Ângelo | R$ 0.45 | −2.0 |
| Caxias do Sul | R$ 0.44 | −2.0 |
| Pelotas | R$ 0.26 | −2.3 |
| Canoas | R$ 0.24 | −2.3 |
| Lajeado | R$ 0.21 | −2.4 |
| Regulated Contracting Environment (RCE) | ||
|---|---|---|
| Group B | ||
| Santo Ângelo | Costs kWh | R$ 0.93 |
| Caxias do Sul | Costs kWh | R$ 0.91 |
| Group A | ||
| Pelotas | Costs kWh peak hours | R$ 2.44 |
| Pelotas | Costs kWh off-peak hours | R$ 0.53 |
| Free Contracting Environment (FCE) | ||
| Lajeado | Costs kWh peak hours | R$ 0.43 |
| Lajeado | Costs kWh off-peak hours | R$ 0.43 |
| Canoas | Costs kWh peak hours | R$ 1.15 |
| Canoas | Costs kWh off-peak hours | R$ 0.50 |
| Expenses with Recharges | ||
|---|---|---|
| kW USD Single (with/discount) | R$ | 10.41105800 |
| Cost—Demand | R$ | 2234.21 |
| Energy consumed Peak (kWh) month | 13,519.80 | |
| Energy consumed Off-Peak (kWh) month | 45,066.00 | |
| TUSD kWh Peak + TE (ACL) | R$ | 1.15 |
| TUSD kWh Out Peak + TE (ACL) | R$ | 0.50 |
| Peak Cost—Energy | R$ | 15,547.77 |
| Off-Peak Cost—Energy | R$ | 22,533.00 |
| Total for 29 recharges | R$ | 40,314.98 |
| Expenses with Recharges | ||
|---|---|---|
| kW USD Peak (with discount) | R$ | 15.55528500 |
| kW USD Off-Peak (with discount) | R$ | 10.41105800 |
| Peak Cost—Demand | R$ | 1611.53 |
| Off-Peak Cost—Demand | R$ | 1078.59 |
| Energy consumed Peak (kWh) month | 6526.8 | |
| Energy consumed Off-Peak (kWh) month | 21,756 | |
| TUSD kWh Peak/Off-Peak + TE (ACL) | R$ | 0.43 |
| Peak Cost—Energy | R$ | 2806.52 |
| Off-Peak Cost—Energy | R$ | 9355.08 |
| Total for 14 recharges | R$ | 14,851.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallepiane, P.G.; Mallmann, L.; Neves, L.S. Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks. Energies 2025, 18, 5801. https://doi.org/10.3390/en18215801
Dallepiane PG, Mallmann L, Neves LS. Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks. Energies. 2025; 18(21):5801. https://doi.org/10.3390/en18215801
Chicago/Turabian StyleDallepiane, Patrícia Gomes, Leandro Mallmann, and Luciane Silva Neves. 2025. "Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks" Energies 18, no. 21: 5801. https://doi.org/10.3390/en18215801
APA StyleDallepiane, P. G., Mallmann, L., & Neves, L. S. (2025). Analysis of the Logistics Impact for the Freight Transportation Sector Using Electric Trucks. Energies, 18(21), 5801. https://doi.org/10.3390/en18215801

