Assessment Method for Dynamic Adjustable Capacity of Distribution Network Feeder Load Based on CNN-LSTM Source–Load Forecasting
Abstract
1. Introduction
2. Modeling of Feeder Regulation Characteristics and Parameter Identification Methods
2.1. Modeling of Feeder Load Regulation Characteristics
2.2. Parameter Identification Methods for Regulation Characteristic Models
3. CNN-LSTM-Based Source–Load Forecasting Model
3.1. Strongly Correlated Feature Selection Method
3.2. LSTM Prediction Method
3.3. CNN-LSTM Hybrid Forecasting Model
4. Feeder Load Adjustable Capacity Assessment Method
4.1. Full-System Node Voltage Prediction Model
4.2. Calculation of Feeder Load Adjustable Capacity
- (1)
- Node voltage constraints
- (2)
- Operational Constraints of Regulation Equipment
- (3)
- Voltage Variation Constraint
5. Case Analysis
5.1. Case Configuration
5.2. Accuracy Analysis of CNN-LSTM Prediction Model
5.3. Evaluation Results of Feeder Load Adjustable Capacity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zame, K.K.; Brehm, C.A.; Nitica, A.T.; Richard, C.L.; Schweitzer, G.D., III. Smart grid and energy storage: Policy recommendations. Renew. Sustain. Energy Rev. 2018, 82, 1646–1654. [Google Scholar] [CrossRef]
- Ning, J.; Hao, S.; Zeng, A.; Chen, B.; Tang, Y. Research on multi-timescale coordinated method for source-grid-load with uncertain renewable energy considering demand response. Sustainability 2021, 13, 3400. [Google Scholar] [CrossRef]
- Kang, C.; Chen, Q.; Su, J.; Ai, Q.; Ji, Y.; Pan, W.; Gao, H.C.; Wu, M. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system. Autom. Electr. Power Syst. 2022, 46, 3–14. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Z.; Xu, X.; Cong, R.; Yan, M.; Sun, P.; Liu, T. Two-Stage Robust Optimal Configuration of a Multi-actor Integrated Energy System Considering Demand Response and Flexibility. Power Syst. Big Data 2024, 27, 23–32. [Google Scholar]
- Yang, M.; Wang, T.; Zhang, X.; Zhang, W.; Wang, B. Considering dynamic perception of fluctuation trend for long-foresight-term wind power prediction. Energy 2024, 289, 130016. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Tan, Z.; Xing, D.; Tan, C. Optimal Dispatch and Cost Allocation Model for Combined Peak Shaving of Source-Load-Storage under High Percentage Penetration of Renewable Energy. Renew. Energy 2025, 255, 123845. [Google Scholar] [CrossRef]
- Wei, T. Event—Driven Deaking Scheduling Strategy Considering load Flexibility of Electrolytic Aluminum. Power Syst. Big Data 2024, 27, 73–80. [Google Scholar]
- Hayward, S.; Merlin, M.; Williams, M.; Morstyn, T. Coordination of Smart Hybrid Transformers in Distribution Networks. IEEE Trans. Smart Grid 2024, 16, 973–988. [Google Scholar] [CrossRef]
- Han, L.; Yin, J.; Wu, L.; Sun, L.; Wei, T. Research on reactive power compensation control strategy of flexible on-load voltage regulator. Energies 2022, 15, 6193. [Google Scholar] [CrossRef]
- Arora, S.; Satsangi, S.; Kaur, S.; Khanna, R. Substation demand reduction by CVR enabled intelligent PV inverter control functions in distribution systems. Int. Trans. Electr. Energy Syst. 2021, 31, e12724. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, Y.; Wang, Z.; Bu, F. Distributed optimal conservation voltage reduction in integrated primary-secondary distribution systems. IEEE Trans. Smart Grid 2021, 12, 3889–3900. [Google Scholar] [CrossRef]
- Gorjian, A.; Eskandari, M.; Moradi, M.H. Conservation voltage reduction in modern power systems: Applications, implementation, quantification, and ai-assisted techniques. Energies 2023, 16, 2502. [Google Scholar] [CrossRef]
- Bircan, M.; Durusu, A.; Kekezoglu, B.; Elma, O.; Selamogullari, U.S. Experimental determination of ZIP coefficients for residential appliances and ZIP model based appliance identification: The case of YTU Smart Home. Electr. Power Syst. Res. 2020, 179, 106070. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Figueiredo, A. Overview of charging and discharging load forcasting for electric vehicles. Autom. Electr. Power Syst. 2019, 43, 177–191. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.; Shi, S.; Gao, Y.; Zhu, Z.; Wang, J. Power Data-Driven and Demand-Response-Based Energy Routing Strategy for Multi-Station Converged Cooling, Heating and Power Systems. Power Syst. Big Data 2022, 25, 29–37. [Google Scholar]
- Qin, Y.; Li, K.; Liang, Z.; Lee, B.; Zhang, F.; Gu, Y.; Zhang, L.; Wu, F.; Rodriguez, D. Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal. Appl. Energy 2019, 236, 262–272. [Google Scholar] [CrossRef]
- Yao, F.; Tang, J.; Chen, S.; Dong, X. Charging load prediction method for electric vehicles based on an ISSA-CNN-GRU model. Power Syst. Prot. Control 2023, 51, 158–167. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, Y.; Zhao, J.; Liu, X.; Li, K.; Qiu, W.; Gang, Y. A review on short-term and ultra-short-term wind power prediction. Autom. Electr. Power Syst. 2015, 39, 141–151. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Zu, G.; Hao, Z.; Huang, X.; Zhang, C. Total Supply Capability of Distribution Network Considering Flexible Interconnection of Low-voltage Distribution Station Areas. Autom. Electr. Power Syst. 2023, 47, 84–93. [Google Scholar] [CrossRef]
- Xiao, J.; Cai, Z. Judgment Theorem of N-1 Total Supply Capability for Distribution Network. Proc. CSEE 2023, 43, 9481–9496. [Google Scholar]
- Xiao, J.; He, G. Model of Total Supply Capability for Distribution Network Considering Bidirectional Energy Exchange Load. Autom. Electr. Power Syst. 2022, 46, 11–19. [Google Scholar] [CrossRef]
- Ge, S.; Sun, H.; Liu, H.; Zhang, Q.; Li, J. Power supply capability evaluation of active distribution network considering reliability and post-fault load response. Autom. Electr. Power Syst. 2019, 43, 77–84. [Google Scholar] [CrossRef]
- Hu, X.; Yang, S.; Wang, L.; Meng, Z.; Shi, F.; Liao, S. Evaluation Method for Voltage Regulation Range of Medium-Voltage Substations Based on OLTC Pre-Dispatch. Energies 2024, 17, 4494. [Google Scholar] [CrossRef]
- Liao, S.; Shi, F.; Xu, J.; Ke, D.; Sun, Y.; Zhang, H. Dynamic Assessment Method for Virtual Power Plant Regulation Capability Based on Direct Control of Feeder Load Clusters. Autom. Electr. Power Syst. 2025, 49, 73–83. Available online: https://link.cnki.net/urlid/32.1180.TP.20250811.1710.004 (accessed on 10 September 2025).
- Bernstein, A.; Wang, C.; Dall’anese, E.; Boudec, J.Y.L.; Zhao, C. Load-flow in multiphase distribution networks: Existence, uniqueness, non-singularity and linear models. IEEE Trans. Power Syst. 2018, 33, 5832–5843. [Google Scholar] [CrossRef]
- GB/T 12325-2008; Power Quality—Deviation of Supply Voltage. China National Standard: Beijing, China, 2008.













| Node Number | Node Number | ||
|---|---|---|---|
| 2 | 1.699 | 18 | 1.732 | 
| 3 | 1.730 | 19 | 1.507 | 
| 4 | 1.838 | 20 | 1.548 | 
| 5 | 1.795 | 21 | 1.845 | 
| 6 | 1.734 | 22 | 1.694 | 
| 7 | 1.599 | 23 | 1.838 | 
| 8 | 1.767 | 24 | 1.584 | 
| 9 | 1.533 | 25 | 1.721 | 
| 10 | 1.750 | 26 | 1.752 | 
| 11 | 1.764 | 27 | 1.513 | 
| 12 | 1.792 | 28 | 1.746 | 
| 13 | 1.856 | 29 | 1.645 | 
| 14 | 1.893 | 30 | 1.520 | 
| 15 | 1.808 | 31 | 1.696 | 
| 16 | 1.733 | 32 | 1.577 | 
| 17 | 1.871 | 33 | 1.549 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Long, Z.; Zhang, H.; Xu, Y.; Cai, Y.; Shi, F.; Shen, N.; Liao, S. Assessment Method for Dynamic Adjustable Capacity of Distribution Network Feeder Load Based on CNN-LSTM Source–Load Forecasting. Energies 2025, 18, 5700. https://doi.org/10.3390/en18215700
Zheng Y, Long Z, Zhang H, Xu Y, Cai Y, Shi F, Shen N, Liao S. Assessment Method for Dynamic Adjustable Capacity of Distribution Network Feeder Load Based on CNN-LSTM Source–Load Forecasting. Energies. 2025; 18(21):5700. https://doi.org/10.3390/en18215700
Chicago/Turabian StyleZheng, Youzhuo, Zhi Long, Hengrong Zhang, Yutao Xu, Yongxiang Cai, Fengming Shi, Nuoqing Shen, and Siyang Liao. 2025. "Assessment Method for Dynamic Adjustable Capacity of Distribution Network Feeder Load Based on CNN-LSTM Source–Load Forecasting" Energies 18, no. 21: 5700. https://doi.org/10.3390/en18215700
APA StyleZheng, Y., Long, Z., Zhang, H., Xu, Y., Cai, Y., Shi, F., Shen, N., & Liao, S. (2025). Assessment Method for Dynamic Adjustable Capacity of Distribution Network Feeder Load Based on CNN-LSTM Source–Load Forecasting. Energies, 18(21), 5700. https://doi.org/10.3390/en18215700
 
        


 
       