Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids
Abstract
1. Introduction
2. MG Electrical Network Model
3. Local Control Framework
3.1. Conventional Droop Control
3.2. Steady-State Requirements for Frequency and Power Sharing
3.3. Local Voltage Regulation
4. Sliding Mode-Based Frequency Control
4.1. Local SMC Law and Sliding Surface
4.2. Sliding Mode Behavior
5. Stability Analysis
5.1. Lyapunov-Based Stability Analysis
5.1.1. Outside the Sliding Surface
5.1.2. On the Sliding Surface
5.2. Steady-State Frequency Under Sliding Mode Control
- If , then , and
- If , then , and
- If , then , and the condition becomes
5.3. Impact of Chattering on Inverter Operation
6. Results
6.1. Simulation Setup
6.2. Controller Gain Selection and Impact
6.3. Simulation Results
7. Discussion
7.1. Active Power Sharing and Frequency Restoration
7.2. Robustness Under Perturbations
7.3. Steady-State Accuracy vs. Simplicity
7.4. Comparison with Communication-Based Approaches
8. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies in hierarchical controlled microgrids. IEEE Trans. Power Electron. 2017, 32, 2427–2451. [Google Scholar] [CrossRef]
- Dou, C.; Yue, D.; Guerrero, J.M. Multiagent system-based event-triggered hybrid controls for high-security hybrid energy generation systems. IEEE Trans. Ind. Inform. 2017, 13, 584–594. [Google Scholar] [CrossRef]
- Chandorkar, M.C.; Divan, D.M.; Adapa, R. Control of parallel connected inverters in standalone AC supply systems. IEEE Trans. Ind. Appl. 1993, 29, 136–143. [Google Scholar] [CrossRef]
- Andreasson, M.; Dimarogonas, D.V.; Sandberg, H.; Johansson, K.H. Distributed control of networked dynamical systems: Static feedback, integral action and consensus. IEEE Trans. Autom. Control 2014, 59, 1750–1764. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Shafiee, Q.; Dorfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Liu, H.; Zhang, Y.; Wang, J. Hybrid AC/DC Microgrid: Systematic Evaluation of Interlinking Converters, Control Strategies, and Protection Schemes: A Review. IEEE Access 2024, 12, 160097–160132. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Yu, W.; Huang, T.; Liu, Z.W. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans. Ind. Inform. 2016, 12, 1775–1785. [Google Scholar] [CrossRef]
- Rosero, C.X.; Velasco, M.; Martí, P.; Camacho, A.; Miret, J.; Castilla, M. Analysis of Consensus-Based Islanded Microgrids Subject to Unexpected Electrical and Communication Partitions. IEEE Trans. Smart Grid 2019, 10, 5125–5135. [Google Scholar] [CrossRef]
- Rosero, C.X.; Velasco, M.; Martí, P.; Camacho, A.; Miret, J.; Castilla, M. Active Power Sharing and Frequency Regulation in Droop-Free Control for Islanded Microgrids Under Electrical and Communication Failures. IEEE Trans. Ind. Electron. 2020, 67, 6461–6472. [Google Scholar] [CrossRef]
- Nasirian, V.; Shafiee, Q.; Guerrero, J.M.; Lewis, F.L.; Davoudi, A. Droop-free distributed control for AC microgrids. IEEE Trans. Power Electron. 2016, 31, 1600–1617. [Google Scholar] [CrossRef]
- Xiao, S.; Ge, X.; Ding, L.; Yue, D. A Bandwidth-Conscious Event-Based Control Approach to Secondary Frequency Regulation Under Vehicle-to-Grid Service. IEEE Trans. Smart Grid 2024, 15, 3739–3750. [Google Scholar] [CrossRef]
- Rey, J.M.; Martí, P.; Velasco, M.; Miret, J.; Castilla, M. Secondary switched control with no communications for islanded microgrids. IEEE Trans. Ind. Electron. 2017, 64, 8534–8545. [Google Scholar] [CrossRef]
- Rey, J.M.; Rosero, C.X.; Velasco, M.; Martí, P.; Miret, J.; Castilla, M. Local frequency restoration for droop-controlled parallel inverters in islanded microgrids. IEEE Trans. Energy Convers. 2019, 34, 1232–1241. [Google Scholar] [CrossRef]
- Liu, C.; Li, B.; Zhang, Y.; Zhang, Y.; Jiang, Q.; Liu, T. The LCC type DC grids forming method and fault ride-through strategy based on fault current limiters. Int. J. Electr. Power Energy Syst. 2025, 170, 110843. [Google Scholar] [CrossRef]
- Utkin, V. Variable structure systems with sliding modes. IEEE Trans. Autom. Control 1977, 22, 212–222. [Google Scholar] [CrossRef]
- Rubagotti, M.; Estrada, A.; Castanos, F.; Ferrara, A.; Fridman, L. Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE Trans. Automat. 2011, 56, 2699–2704. [Google Scholar] [CrossRef]
- Cucuzzella, M.; Incremona, G.P.; Ferrara, A. Design of robust higher order sliding mode control for microgrids. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 393–401. [Google Scholar] [CrossRef]
- Shahzad, E.; Khan, A.U.; Iqbal, M.; Saeed, A.; Hafeez, G.; Waseem, A.; Albogamy, F.R.; Ullah, Z. Sensor Fault-Tolerant Control of Microgrid Using Robust Sliding-Mode Observer. Sensors 2022, 22, 2524. [Google Scholar] [CrossRef] [PubMed]
- Rosero, C.X.; Gavilánez, M.; Mejía-Echeverría, C. Droop-Free Sliding-Mode Control for Active-Power Sharing and Frequency Regulation in Inverter-Based Islanded Microgrids. Energies 2023, 16, 6442. [Google Scholar] [CrossRef]
- Alfaro, C.; Guzman, R.; De Vicuña, L.G.; Komurcugil, H.; Martín, H. Distributed direct power sliding-mode control for islanded AC microgrids. IEEE Trans. Ind. Electron. 2022, 69, 9700–9710. [Google Scholar] [CrossRef]
- Alfaro, C.; Guzman, R.; Camacho, A.; Borrell, Á.; De Vicuña, L.G. A Novel Complex Power Sharing Based on Sliding Mode Control for Islanded AC Microgrids. IEEE Trans. Ind. Electron. 2025, 72, 5507–5517. [Google Scholar] [CrossRef]
- Xiao, S.; Ding, L.; Ye, M.; Yue, D.; Ge, H. Resource-Efficient and Resilient SOC/SOH Co-Monitoring of EV Batteries with Attack Detection. IEEE Trans. Smart Grid 2025, 16, 2529–2540. [Google Scholar] [CrossRef]
- Kundur, P.S.; Malik, O.P. Power System Stability and Control; McGraw-Hill Education: New York, NY, USA, 2022. [Google Scholar]
- Filippov, A.F. Differential Equations with Discontinuous Right-Hand Sides; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Cortés, J. Discontinuous Dynamical Systems. IEEE Control Syst. Mag. 2008, 28, 36–73. [Google Scholar]
- Wu, L.; Liu, J.; Vázquez, S.; Mazumder, S.K. Sliding Mode Control in Power Converters and Drives: A Review. IEEE/CAA J. Autom. Sin. 2022, 9, 392–406. [Google Scholar] [CrossRef]
- Lee, H.; Utkin, V.I.; Fridman, L. Chattering Suppression Methods in Sliding Mode Control Systems. Annu. Rev. Control 2007, 31, 179–188. [Google Scholar] [CrossRef]
- Boiko, I.M. Chattering in Sliding Mode Control Systems with Boundary Layer Approximation of Discontinuous Control. Int. J. Syst. Sci. 2012, 44, 1126–1133. [Google Scholar] [CrossRef]
- Guldner, J.; Utkin, V. The Chattering Problem in Sliding Mode Systems. In Proceedings of the 14th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Perpignan, France, 19–23 June 2000. [Google Scholar]
- Martínez-Fuentes, C.A.; Pérez Ventura, U.; Fridman, L. Chattering Analysis of Lipschitz Continuous Sliding-Mode Controllers. Int. J. Robust Nonlinear Control 2020, 65, 1–16. [Google Scholar] [CrossRef]
- Rosero, C.X.; Vaca, C.; Gavilanez, M.; Iglesias, I.; Rosero, R. Towards a simulation platform for islanded microgrids based on grid-forming power converters. In Proceedings of the IEEE 5th Colombian Conference on Automatic Control (CCAC), Online, 19–22 October 2021; pp. 1–6. [Google Scholar]
- Cervin, A.; Henriksson, D.; Lincoln, B.; Eker, J.; Årzén, K.-E. How Does Control Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug and TrueTime. IEEE Control Syst. Mag. 2003, 23, 16–30. [Google Scholar]
Symbol | Description | Value |
---|---|---|
Grid voltage (rms line to line) | V | |
Grid frequency (at no load) | rad/s | |
c | Gains for voltage droop | 1 μV/(VAr) |
m | Gains for frequency droop | 1 mrad/(W · s) |
k | Gains for frequency compensation in sliding mode | mrad/(s) |
Transmission line impedance | 1.3 m | |
Transmission line impedances 2 and 3 | 1 m | |
Transformer impedances 1 and 2 | 0.62 m | |
Transformer impedances 3 and 4 | 1.31 m | |
max | Maximum global load impedance | 88 |
min | Minimum global load impedance | 44 |
Local load impedance 1 | 88 | |
Virtual impedance | 3.76 m | |
Clock drift rate in | ppm | |
Clock drift rate in | ppm | |
Clock drift rate in | ppm | |
Clock drift rate in | ppm | |
h | Sampling period | ms |
Parameter | Effect of Variation |
---|---|
c | Minimal impact unless reactive power is dominant |
m | Lower m: better frequency, worse sharing |
k | Higher k: faster, more chattering |
Control Method | Advantages | Disadvantages |
---|---|---|
Conventional Droop Control | Fully decentralized Robust to perturbations Effective for voltage and reactive power regulation | Permanent steady-state frequency deviation Limited dynamic performance Uneven power sharing in presence of perturbations |
Local SMC (proposed) | Improved frequency regulation Robust to timing mismatches, load changes, and topology variations No communication required Simple and decentralized implementation | Residual bounded frequency error Chattering due to discontinuous action |
Droop-free SMC (with communication) | Precise frequency and power sharing Fast convergence under ideal communication conditions | Vulnerable to communication failure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosero, C.X.; Rosero, F.; Tapia, F. Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids. Energies 2025, 18, 5495. https://doi.org/10.3390/en18205495
Rosero CX, Rosero F, Tapia F. Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids. Energies. 2025; 18(20):5495. https://doi.org/10.3390/en18205495
Chicago/Turabian StyleRosero, Carlos Xavier, Fredy Rosero, and Fausto Tapia. 2025. "Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids" Energies 18, no. 20: 5495. https://doi.org/10.3390/en18205495
APA StyleRosero, C. X., Rosero, F., & Tapia, F. (2025). Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids. Energies, 18(20), 5495. https://doi.org/10.3390/en18205495