Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules
Abstract
1. Introduction
2. SiC-Based Module and Modeling Process
2.1. SiC-Based Power Module
2.2. Molding Process
3. Modeling Strategy
3.1. Mesh, Material and Boundary Conditions
| Mass Density | Young’s Modulus | Poisson’s Ratio | Thermal Expansion Coefficient | |
|---|---|---|---|---|
| [tonnes/mm3] | [MPa] | [-] | [1/°C] | |
| Resin (cured) | 1.21 × 10−9 | 25,000 * | 0.34 | 1.20 × 10−5 |
| Copper | 8.96 × 10−9 | 125,000 | 0.3 | 1.75 × 10−5 |
| Solder | 6.54 × 10−9 | 5600 | 0.4 | 2.90 × 10−5 |
| SiC | 3.21 × 10−9 | 410,000 | 0.28 | 4.00 × 10−6 |
| TEOS | 1.04 × 10−9 | 59,000 | 0.25 | 1.00 × 10−6 |
| SiN | 3.17 × 10−9 | 300,000 | 0.29 | 3.40 × 10−6 |
| Polyimide | 1.15 × 10−9 | 3000 | 0.34 | 5.00 × 10−5 |

3.2. Three-Stages Analysis for Resin Curing
- -
- At 50 °C the resin is completely stress-free while the “Copper-to-Poly” assembly is not in a stress-free condition.
- -
- the resin is stretched-deformed following the deformed shape of the “Copper-to-Poly” assembly, but it is not generating any stress nor is it storing any elastic strain which would generate unrealistic stresses in the successive simulation stages.
4. Results and Discussion
4.1. Stresses at Different Interfaces at the Peak Temperature
4.2. Residual Stresses and Plastic Deformation at the End of Cooling
4.3. Insights into the Resin Permanent Straining Before Solidification
4.4. Warpage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perreault, D.J.; Afridi, K.K.; Khan, I.A. 32—Automotive Applications of Power Electronics. In Power Electronics Handbook, 4th ed.; Rashid, M.H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 1067–1090. ISBN 978-0-12-811407-0. [Google Scholar]
- Liu, G.; Wu, Y.; Li, K.; Wang, Y.; Li, C. Development of High Power SiC Devices for Rail Traction Power Systems. J. Cryst. Growth 2019, 507, 442–452. [Google Scholar] [CrossRef]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. [Google Scholar] [CrossRef]
- Yang, Y.; Dorn-Gomba, L.; Rodriguez, R.; Mak, C.; Emadi, A. Automotive Power Module Packaging: Current Status and Future Trends. IEEE Access 2020, 8, 160126–160144. [Google Scholar] [CrossRef]
- Muscato, O.; Di Stefano, V. An Energy Transport Model Describing Heat Generation and Conduction in Silicon Semiconductors. J. Stat. Phys. 2011, 144, 171–197. [Google Scholar] [CrossRef]
- Mirone, G.; Sitta, A.; D’Arrigo, G.; Calabretta, M. Material Characterization and Warpage Modeling for Power Devices Active Metal Brazed Substrates. IEEE Trans. Device Mater. Relib. 2019, 19, 537–542. [Google Scholar] [CrossRef]
- Zhu, N.; Lee, S.Y.; van Wyk, J.D.; Odendaal, W.G.; Liang, Z.X. Thermal Stress and Intrinsic Residual Stress in Embedded Power Modules. In Proceedings of the 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, Salt Lake City, UT, USA, 12–16 October 2003; Volume 2, pp. 1244–1250. [Google Scholar]
- Liu, S.; Yan, Y.; Zhou, Y.; Han, B.; Wang, B.; Zhang, D.; Xue, S.; Wang, Z.; Yu, K.; Shi, Y.; et al. Thermal Induced Interface Mechanical Response Analysis of SMT Lead-Free Solder Joint and Its Adaptive Optimization. Micromachines 2022, 13, 908. [Google Scholar] [CrossRef]
- Dudek, R.; Doering, R.; Pufall, R.; Kanert, W.; Seiler, B.; Rzepka, S.; Michel, B. Delamination Modeling for Power Packages by the Cohesive Zone Approach. In Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2012; IEEE: San Diego, CA, USA, 2012; pp. 187–193. [Google Scholar]
- Strydom, J.T.; van Wyk, J.D. Investigation of Thermally Induced Failure Mechanisms in Integrated Spiral Planar Power Passives. In Proceedings of the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), Pittsburgh, PA, USA, 13–18 October 2002; Volume 3, pp. 1781–1786. [Google Scholar]
- Zhu, N.; Van Wyk, J.D.; Liang, Z.X. Thermal-Mechanical Stress Analysis in Embedded Power Modules. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; Volume 6, pp. 4503–4508. [Google Scholar]
- Ye, H.; Lin, M.; Basaran, C. Failure Modes and FEM Analysis of Power Electronic Packaging. Finite Elem. Anal. Des. 2002, 38, 601–612. [Google Scholar] [CrossRef]
- Sitta, A.; Renna, M.; Messina, A.A.; Mirone, G.; D’Arrigo, G.; Calabretta, M. Power Module Ceramic Substrates: Mechanical Characterization and Modeling. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; IEEE: Cracow, Poland, 2020; pp. 1–5. [Google Scholar]
- Struzziero, G.; Nardi, D.; Sinke, J.; Teuwen, J.J.E. Cure-Induced Residual Stresses for Warpage Reduction in Thermoset Laminates. J. Compos. Mater. 2020, 54, 3055–3065. [Google Scholar] [CrossRef]
- Gschwandl, M.; Fuchs, P.F.; Mitev, I.; Yalagach, M.; Antretter, T.; Qi, T.; Schingale, A. Modeling of Manufacturing Induced Residual Stresses of Viscoelastic Epoxy Mold Compound Encapsulations. In Proceedings of the 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 6–9 December 2017; IEEE: Singapore, 2017; pp. 1–8. [Google Scholar]
- Nielsen, M.W.; Hattel, J.; Andersen, T.; Branner, K.; Nielsen, P.H. Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate. ECCM 2012—Composites at Venice, Proceedings of the 15th European Conference on Composite Materials 2012. Available online: https://www.scopus.com/pages/publications/84904016051?origin=resultslist (accessed on 4 October 2025).
- Bogetti, T.A.; Gillespie, J.W., Jr. Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates. J. Compos. Mater. 1992, 26, 626–660. [Google Scholar] [CrossRef]
- Mirone, G.; Barbagallo, R.; Bua, G.; La Rosa, G. Finite Element Simulation and Sensitivity Analysis of the Cohesive Parameters for Delamination Modeling in Power Electronics Packages. Materials 2023, 16, 4808. [Google Scholar] [CrossRef] [PubMed]
- Forndran, F.; Sprenger, M.; Barrera, J.R.; Steinau, M.; Roellig, M.; Muench, S. Modelling Warpage Behavior of Molded Power Modules for Electric Vehicles. In Proceedings of the 2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Catania, Italy, 7–10 April 2024; IEEE: Catania, Italy, 2024; pp. 1–6. [Google Scholar]
- Mirone, G.; Barbagallo, R.; Bua, G.; Sitta, A.; Calabretta, M.; Sequenzia, G. Thermal-Structural Modeling of Power Electronic Package: Effects of Deposition Geometry and Dry Spot on the Stress Distributions. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1306, 012012. [Google Scholar] [CrossRef]
- Schuderer, J.; Liu, C.; Pavlicek, N.; Salvatore, G.; Loisy, J.-Y.; Schroeder, A.; Torresin, D.; Gradinger, T.; Baumann, D.; Mohn, F.; et al. High-Power SiC and Si Module Platform for Automotive Traction Inverter. In Proceedings of the PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019; pp. 1–8. [Google Scholar]
- Available online: https://www.st.com/en/power-transistors/stpower-n-channel-mosfets-gt-200-v-to-700-v/documentation.html (accessed on 1 October 2025).
- O’Neill, A.; Vavasour, O.J.; Russell, S.; Arith, F.; Urresti, J.; Gammon, P.M. Dielectrics in Silicon Carbide Devices: Technology and Application. Adv. Silicon Carbide Electron. Technol. II 2020, 69, 63–106. [Google Scholar]
- Mirone, G.; Barbagallo, R.; Corallo, L.; Bua, G.; La Rosa, G.; Fargione, G.; Giudice, F. Nonlinear Elastoplastic Response and Damage Modeling in Power Electronics Packages Under Thermal Cycling. Eng. Proc. 2025, 85, 50. [Google Scholar]
- Sun, Y.; Lee, H.-S.; Han, B. Measurement of Elastic Properties of Epoxy Molding Compound by Single Cylindrical Configuration with Embedded Fiber Bragg Grating Sensor. Exp. Mech. 2017, 57, 313–324. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Ryan, T.; Ho, P.S.; McKerrow, A.J.; Shih, W.-Y. Measurement of Elastic Modulus, Poisson Ratio, and Coefficient of Thermal Expansion of on-Wafer Submicron Films. J. Appl. Phys. 1999, 85, 6421–6424. [Google Scholar] [CrossRef]
- MatWeb: Overview of the Properties of Epoxy Molding Compound. Available online: https://www.Matweb.Com/Search/DataSheet.Aspx?MatGUID=d32b84b0ef1e410596e9dda9e02429c7&ckck=1 (accessed on 1 October 2025).
- MatWeb: Overview of the Mechanical Properties of SiC. Available online: https://www.Matweb.Com/Search/QuickText.Aspx?SearchText=SiC (accessed on 1 October 2025).
- MatWeb: Overview of the Properties of Eutectic Solder (63Sn-37Pb)—ASTM B 32 Grade Sn63. Available online: https://www.Matweb.Com/Search/Datasheet.Aspx?Matguid=3a5c8bc670914d588b26ab0b994d88cb&ckck=1 (accessed on 1 October 2025).
- MatWeb: Overview of the Mechanical Properties of Si3N4. Available online: https://www.Matweb.Com/Search/QuickText.Aspx?SearchText=Si3N4 (accessed on 1 October 2025).
- Agag, T.; Koga, T.; Takeichi, T. Studies on Thermal and Mechanical Properties of Polyimide–Clay Nanocomposites. Polymer 2001, 42, 3399–3408. [Google Scholar] [CrossRef]
- Kabaar, A.B.; Buttay, C.; Dezellus, O.; Estevez, R.; Gravouil, A.; Gremillard, L. Characterization of Materials and Their Interfaces in a Direct Bonded Copper Substrate for Power Electronics Applications. Microelectron. Reliab. 2017, 79, 288–296. [Google Scholar] [CrossRef]
- He, J.; Ling, Y.; Lei, D. Mechanical Properties of Sn–Pb Based Solder Joints and Fatigue Life Prediction of PBGA Package Structure. Ceram. Int. 2023, 49, 27445–27456. [Google Scholar] [CrossRef]
- Munro, R.G. Material Properties of a Sintered α-SiC. J. Phys. Chem. Ref. Data 1997, 26, 1195–1203. [Google Scholar] [CrossRef]
- Hoffmann, M.J.; Petzow, G.; NATO (Eds.) Tailoring of Mechanical Properties of Si3N4 Ceramics; NATO ASI series Series E, Applied sciences; Kluwer Academic: Dordrecht, The Netherlands; London, UK, 1994; ISBN 978-0-7923-3119-3. [Google Scholar]
- Matsui, M.; Masuda, M. Fracture Behavior of Silicon Nitride at Elevated Temperatures. In Tailoring of Mechanical Properties of Si3N4 Ceramics; Hoffmann, M.J., Petzow, G., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 403–414. ISBN 978-94-011-0992-5. [Google Scholar]
- Ucar, Y.; Akova, T.; Aysan, I. Mechanical Properties of Polyamide Versus Different PMMA Denture Base Materials. J. Prosthodont. 2012, 21, 173–176. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Tsiafis, I.; Michailidis, N.; Tsouknidas, A. Determination of Epoxy Resins’ Mechanical Properties by Experimental-Computational Procedures in Tension. J. Balk. Tribol. Assoc. 2009, 15, 18–24. Available online: https://www.scopus.com/pages/publications/64649099668?origin=resultslist# (accessed on 4 October 2025).
- Adler, C.; Morais, P.; Akhavan-Safar, A.; Carbas, R.J.C.; Marques, E.A.S.; Karunamurthy, B.; Da Silva, L.F.M. Cohesive Properties of Bimaterial Interfaces in Semiconductors: Experimental Study and Numerical Simulation Using an Inverse Cohesive Contact Approach. Materials 2024, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, M.; Sitta, A.; Oliveri, S.M.; Sequenzia, G. Copper to Resin Adhesion Characterization for Power Electronics Application: Fracture Toughness and Cohesive Zone Analysis. Eng. Fract. Mech. 2022, 266, 108339. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, X.; Wu, X.; Liu, G. Investigation on Creep-Fatigue Interaction Failure of Die-Attach Solder Layers in IGBTs Under Power Cycling. IEEE Trans. Power Electron. 2025, 40, 7261–7274. [Google Scholar] [CrossRef]












| AMB Copper Bottom | AMB SiN | AMB Copper Top | Solder | SiC | TEOS | SiN | Poly. | Internal Resin | External Resin | ||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Length along x [mm] | 20 | 20 | 20 | 2 | 2 | 2 | 2 | 2 | 1.5 | 5 | |
| Length along z [mm] | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 1.5 | 7.5 | |
| Thickness [mm] | 0.24 | 0.48 | 0.48 | 0.5 | 0.2 | 2 × 10−3 | 1 × 10−3 | 6 × 10−3 | 9 × 10−9 | 5 | |
| Element type [-] | SE HEX-8 | SE HEX-8 | SE HEX-8 | SSE HEX-8 | SE HEX-8 | SSE HEX-8 | SSE HEX-8 | SSE HEX-8 | SSE HEX-8 | SEE HEX-8 | |
| N. Elements [-] | 8112 | 16,224 | 16,224 | 400 | 500 | 200 | 200 | 200 | 48 | 8628 | |
| Avg. Element size (x,z,y) [mm3] | 0.5 × 0.2 × 0.12 | 0.5 × 0.2 × 0.12 | 0.5 × 0.2 × 0.12 | 0.2 × 0.2 × 0.0125 | 0.2 × 0.2 × 0.04 | 0.05 × 0.15 × 0.002 | 0.05 × 0.15 × 0.001 | 0.05 × 0.15 × 0.006 | 0.2 × 0.25 × 0.009 | 0.2 × 0.25 × 0.24 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirone, G.; Corallo, L.; Barbagallo, R.; Bua, G. Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules. Energies 2025, 18, 5364. https://doi.org/10.3390/en18205364
Mirone G, Corallo L, Barbagallo R, Bua G. Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules. Energies. 2025; 18(20):5364. https://doi.org/10.3390/en18205364
Chicago/Turabian StyleMirone, Giuseppe, Luca Corallo, Raffaele Barbagallo, and Giuseppe Bua. 2025. "Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules" Energies 18, no. 20: 5364. https://doi.org/10.3390/en18205364
APA StyleMirone, G., Corallo, L., Barbagallo, R., & Bua, G. (2025). Modeling of Residual Stress, Plastic Deformation, and Permanent Warpage Induced by the Resin Molding Process in SiC-Based Power Modules. Energies, 18(20), 5364. https://doi.org/10.3390/en18205364

