Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field
Abstract
1. Introduction
2. Failure Overview
3. Model Construction and Parameters
3.1. Geometric Model Construction
3.2. FEM Mathematical Formulation
4. Results and Analysis
4.1. Air Gap Defects A Are Located Inside the Insulator Connecting the Surface of the Conductor
4.2. Air Gap Defects B Are Located Inside the Insulator Connecting the Surface of the Conductor
4.2.1. Air Gap Defect B1 Within the Insulator, Contacting the Conductor Surface
4.2.2. Air Gap Defect B1 Within the Insulator
4.2.3. Air Gap Defect B2 Within the Insulator Away from the Conductor
4.2.4. Air Gap Defect B3 Within the Insulator Away from the Conductor
4.3. Surface Void Defect C 150 mm from Conductor
4.4. Effect of Insulator Surface Crack on the Magnitude of the Electric Field Strength
4.4.1. Surface Crack Defect D1 65 mm from Conductor
4.4.2. Surface Crack Defect D2 85 mm from Conductor
4.4.3. Surface Crack Defect D3 150 mm from Conductor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, D.M.; Yan, J.D. Application and development of gas insulated transmission lines (GIL). High. Volt. Eng. 2017, 43, 699–707. [Google Scholar] [CrossRef]
- Qi, B.; Zhang, G.X.; Li, C.R.; Gao, C.J.; Zhang, B.Y.; Chen, Z.Z. Research status and application prospects of gas insulated metal enclosed transmission lines. High. Volt. Tech. 2015, 41, 1466–1473. [Google Scholar] [CrossRef]
- Li, X.L.; Wan, M.; Yan, S.Y.; Lin, X. Temperature and electric field distribution characteristics of a DC GIL basin type spacer with 3D modelling and simulation. Energies 2021, 14, 7889. [Google Scholar] [CrossRef]
- Tian, F.Y.; Hao, Y.P.; Zuo, Z.Y.; Zheng, Y.; He, W.M.; Yang, L.; Li, L.C. An Ultrasonic Pulse Echo Method to Detect Internal Defects in Epoxy Composite Insulation. Energies 2019, 12, 4804. [Google Scholar] [CrossRef]
- Liu, T.; Sun, H.; Li, G.; Zhang, Y.; Wang, J.; Xiao, J.; Lu, Y.; Niu, C.; Wu, Y. Decay characteristic of gas arc in C4F7N/N2 and C4F7N/CO2 gas mixture by Thomson scattering. J. Phys. D Appl. Phys. 2024, 58, 045203. [Google Scholar] [CrossRef]
- Li, J.H.; Han, X.T.; Liu, Z.H.; Li, Y.M. A review of partial discharge detection techniques for electrical equipment. High. Volt. Technol. 2015, 41, 2583–2601. [Google Scholar] [CrossRef]
- Duan, Y.M.; Yang, H.; Wang, X.; Hang, J.; Zhao, S.R.; Zhou, F.S.; Gao, C. Research on Crack Defect Propagation Behavior of Epoxy Resin Material for Basin insulator Based on Johnson Cook Model. Mater. Rep. 2025, 39, 261–267. Available online: https://link.cnki.net/urlid/50.1078.TB.20250318.1505.004 (accessed on 7 October 2025).
- Liu, J.H.; Guo, C.X.; Yao, M.; Wang, Y.J.; Huang, C.J.; Jang, X.C. Analysis of the propagation path of partial discharge electromagnetic waves in GIS. High. Volt. Technol. 2009, 35, 1044–1048. [Google Scholar] [CrossRef]
- Wang, H.R.; Guo, Z.H.; Zhang, S.Y.; Du, J.Q.; Peng, Z.R.; Liu, P. Influence of defects on the electric field distribution of ultra high voltage AC basin type insulator. High. Volt. Technol. 2018, 4, 982–992. [Google Scholar] [CrossRef]
- Wang, H.M.; Ding, D.W.; Jia, Z.J.; Tang, M.Z.; Zhao, C.H.; Tang, Z.G. Study on the long intermittent discharge characteristics of GIS basin type insulator surface defects under constant pressure. Proc. CSEE 2018, 38, 6188–6194. [Google Scholar] [CrossRef]
- Chang, W.Z.; Bi, J.G.; Liu, S.P.; Yuan, S.; Zhou, H.Y.; Du, F.; Ma, G.M. Electric field simulation of typical defects in GIS basin type insulator. High. Volt. Appar. 2018, 54, 138–143. [Google Scholar] [CrossRef]
- He, B.N.; Kong, J.; Jiang, R.Z.; Ning, J.X.; Wang, L.M.; Xie, Y.D.; Huang, G.C. Electric field distribution simulation study under metal wire defects of basin type insulator. Insul. Mater. 2021, 54, 39–44. [Google Scholar] [CrossRef]
- Ueta, G.; Wada, J.; Okabe, S.; Miyashita, M.; Nishida, C.; Kamei, M. Insulation characteristics of epoxy insulator with internal void shaped micro defects, IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 535–543. [Google Scholar] [CrossRef]
- Qi, B.; Li, C.R.; Hao, Z.; Geng, B.B.; Xu, D.G.; Liu, S.Y.; Deng, C. Phenomenon and characteristics of surface partial discharge development along fixed metal particles on GIS insulator. Proc. CSEE 2011, 31, 101–108. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, J.; Tang, M.; Xie, Y.B.; Liu, M.J. Mathematical model of partial discharge ultra high frequency for four typical defects in GIS. Proc. CSEE 2006, 08, 99–105. [Google Scholar] [CrossRef]
- Ding, D.W.; Gao, W.S.; Liu, W.D. Analysis of typical defects in GIS using ultra high frequency method. High. Volt. Technol. 2011, 37, 706–710. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Hao, Y.P.; Tian, F.; Zheng, Y.; He, W.M.; Yang, L.; Li, L.C. An Ultrasonic Longitudinal Through Transmission Method to Measure the Compressive Internal Stress in Epoxy Composite Specimens of Gas Insulated Metal Enclosed Switchgear. Energies 2020, 13, 1248. [Google Scholar] [CrossRef]
- Liu, T.; Sun, H.; Zhang, Y.; Xiao, J.; Lu, Y.; Niu, C.; Wu, Y. Post arc electron density measurement in SF6 and SF6/CO2 mixture arcs using Thomson scattering. Spectrochim. Acta Part. B At. Spectrosc. 2025, 229, 107196. [Google Scholar] [CrossRef]
- Chen, C.; Liang, X.Y.; Zhang, M.W.; Liu, P.; Peng, Z.R. Ultrasonic Intelligent Diagnostic Method for the Internal Defects in Ultra-High Voltage Basin Insulators Using Improved YOLOv8. IEEE Trans. Dielectr. Electr. Insul. 2025. [Google Scholar] [CrossRef]
- He, B.N.; Kong, J.; Ning, J.X.; Wang, Z.Z.; Wang, L.M.; Xie, Y.D.; Hung, D.C. Electric field simulation analysis of basin type insulator with bubble defects. Insul. Mater. 2019, 52, 86–92. [Google Scholar] [CrossRef]
Material | Relative Permittivity |
---|---|
Insulator | 4.975 |
SF6 | 1 |
Air | 1 |
Length of Air Gap Defect (mm) | Local Intense Electric Field Strength Magnitude (kV/mm) |
---|---|
0 | 4.79 |
10 | 10.12 |
20 | 10.24 |
30 | 10.44 |
40 | 10.43 |
50 | 10.44 |
60 | 12.76 |
Types of Air Gap Defects | Smooth Air Gap Defect | Unsmooth Air Gap Defect | |
---|---|---|---|
Length of Air Gap Defects | |||
20 mm | 5.73 | 16.76 | |
40 mm | 6 | 14.83 |
Radius | a | b | c | |
---|---|---|---|---|
Length (mm) | ||||
1 | 7.26 | 9.89 | 9.89 | |
2 | 7.25 | 6.6 | 11.77 | |
3 | 8.23 | 6.64 | 13.45 | |
4 | 8.31 | 5.61 | 14.86 | |
5 | 8.32 | 7.49 | 16.66 | |
6 | 8.41 | 6.83 | 16.07 | |
7 | 8.36 | 6.48 | 15.74 | |
8 | 8.46 | 6.24 | 16.77 | |
9 | 8.39 | 6.12 | 17.09 | |
10 | 8.57 | 6.03 | 18.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, Y.; Liu, J.; Li, H.; Lv, L.; Li, X. Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field. Energies 2025, 18, 5347. https://doi.org/10.3390/en18205347
Yang Z, Wang Y, Liu J, Li H, Lv L, Li X. Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field. Energies. 2025; 18(20):5347. https://doi.org/10.3390/en18205347
Chicago/Turabian StyleYang, Zhuoran, Yue Wang, Jian Liu, Hongze Li, Lixiang Lv, and Xiaolong Li. 2025. "Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field" Energies 18, no. 20: 5347. https://doi.org/10.3390/en18205347
APA StyleYang, Z., Wang, Y., Liu, J., Li, H., Lv, L., & Li, X. (2025). Analysis of the Influence of Structural Defects on the Insulation of GIL Basin Insulator Under AC Electric Field. Energies, 18(20), 5347. https://doi.org/10.3390/en18205347