Flame–Flame Interactions and Jet–Jet Interactions in Gas Turbine Swirl Combustors
Abstract
:1. Introduction
2. Fundamental Characteristics of Swirl Flames
3. Combustor Characteristics Under FFI and JJI
3.1. Flow Characteristics Under FFI and JJI
3.2. Spray Characteristics Under FFI and JJI
3.3. Flame Structures Under FFI and JJI
3.4. Combustor Performance Under FFI and JJI
3.4.1. Blowout Performance
3.4.2. Emissions Performance
3.4.3. Ignition Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FFI | Flame–flame interaction |
JJI | Jet–jet interaction |
FWI | Flame–wall interaction |
FCAI | Flame–cooling air interaction |
PRZ | Primary recirculation zone |
PVC | Precessing vortex core |
LPP | Lean premixed prevaporized combustion |
RQL | Rich burn–quench–lean burn |
LDI | Lean direct injection |
CRZ | Corner recirculation zone |
LDV | Laser Doppler velocimetry |
PDPA | Phase Doppler particle analyzer |
CTRZ | Central toroidal recirculation one |
LBO | Lean blowout |
FAR | Fuel–air ratio |
LES | Large eddy simulation |
EINOx | Emission index of NOx |
References
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion; RT Edwards: Sydney, Australia, 2005. [Google Scholar]
- Nogenmyr, K.J.; Cao, H.J.; Chan, C.K.; Cheng, R.K. Effects of confinement on premixed turbulent swirling flame using large eddy simulation. Combust. Theory Model. 2013, 17, 1003–1019. [Google Scholar] [CrossRef]
- Mercier, R.; Guiberti, T.F.; Chatelier, A.; Durox, D.; Gicquel, O.; Darabiha, N.; Schuller, T.; Fiorina, B. Experimental and numerical investigation of the influence of thermal boundary conditions on premixed swirling flame stabilization. Combust. Flame 2016, 171, 42–58. [Google Scholar] [CrossRef]
- Bénard, P.; Lartigue, G.; Moureau, V.; Mercier, R. Large-eddy simulation of the lean-premixed PRECCINSTA burner with wall heat loss. Proc. Combust. Inst. 2019, 37, 5233–5243. [Google Scholar] [CrossRef]
- Andreini, A.; Becchi, R.; Facchini, B.; Mazzei, L.; Picchi, A.; Vitale, I.; Tolpadi, A. Experimental and numerical investigation of the mutual interaction between liner film cooling and combustor swirl flow. In Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Hermann, J.; Greifenstein, M.; Boehm, B.; Dreizler, A. Experimental investigation of global combustion characteristics in an effusion cooled single sector model gas turbine combustor. Flow Turbul. Combust. 2019, 102, 1025–1052. [Google Scholar] [CrossRef]
- Dreizler, A.; Böhm, B. Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 2015, 35, 37–64. [Google Scholar] [CrossRef]
- Bohlin, A.; Mann, M.; Patterson, B.D.; Dreizler, A.; Kliewer, C.J. Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: Time-resolved probing of flame wall interactions. Proc. Combust. Inst. 2015, 35, 3723–3730. [Google Scholar] [CrossRef]
- Bohlin, A.; Jainski, C.; Patterson, B.D.; Dreizler, A.; Kliewer, C.J. Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging. Proc. Combust. Inst. 2017, 36, 4557–4564. [Google Scholar] [CrossRef]
- Kosaka, H.; Zentgraf, F.; Scholtissek, A.; Bischoff, L.; Häber, T.; Suntz, R.; Albert, B.; Hasse, C.; Dreizler, A. Wall heat fluxes and CO formation/oxidation during laminar and turbulent side-wall quenching of methane and DME flames. Int. J. Heat Fluid Flow 2018, 70, 181–192. [Google Scholar] [CrossRef]
- Jainski, C.; Rißmann, M.; Böhm, B.; Janicka, J.; Dreizler, A. Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 2017, 183, 271–282. [Google Scholar] [CrossRef]
- Steinhausen, M.; Luo, Y.; Popp, S.; Strassacker, C.; Zirwes, T.; Kosaka, H.; Zentgraf, F.; Maas, U.; Sadiki, A.; Dreizler, A.; et al. Numerical investigation of local heat-release rates and thermo-chemical states in side-wall quenching of laminar methane and dimethyl ether flames. Flow Turbul. Combust. 2021, 106, 681–700. [Google Scholar] [CrossRef]
- Kosaka, H.; Zentgraf, F.; Scholtissek, A.; Hasse, C.; Dreizler, A. Effect of flame-wall interaction on local heat release of methane and DME combustion in a side-wall quenching geometry. Flow Turbul. Combust. 2020, 104, 1029–1046. [Google Scholar] [CrossRef]
- Ganter, S.; Heinrich, A.; Meier, T.; Kuenne, G.; Jainski, C.; Rissmann, M.C.; Dreizler, A.; Janicka, J. Numerical analysis of laminar methane-air side-wall-quenching. Combust. Flame 2017, 186, 299–310. [Google Scholar] [CrossRef]
- Steinhausen, M.; Ferraro, F.; Schneider, M.; Zentgraf, F.; Greifenstein, M.; Dreizler, A.; Hasse, C.; Scholtissek, A. Effect of flame retardants on side-wall quenching of partially premixed laminar flames. Proc. Combust. Inst. 2023, 39, 3745–3754. [Google Scholar] [CrossRef]
- Zentgraf, F.; Johe, P.; Cutler, A.D.; Barlow, R.S.; Boehm, B.; Dreizler, A. Classification of flame prehistory and quenching topology in a side-wall quenching burner at low-intensity turbulence by correlating transport effects with CO2, CO and temperature. Combust. Flame 2022, 239, 111681. [Google Scholar] [CrossRef]
- Zentgraf, F.; Johe, P.; Steinhausen, M.; Hasse, C.; Greifenstein, M.; Cutler, A.D.; Barlow, R.S.; Dreizler, A. Detailed assessment of the thermochemistry in a side-wall quenching burner by simultaneous quantitative measurement of CO2, CO and temperature using laser diagnostics. Combust. Flame 2022, 235, 111707. [Google Scholar] [CrossRef]
- Greifenstein, M.; Hermann, J.; Boehm, B.; Dreizler, A. Flame–cooling air interaction in an effusion-cooled model gas turbine combustor at elevated pressure. Exp. Fluids 2019, 60, 10. [Google Scholar] [CrossRef]
- Rivera, J.E.; Gordon, R.L.; Brouzet, D.; Talei, M. Exhaust CO emissions of a laminar premixed propane–air flame interacting with cold gas jets. Combust. Flame 2019, 210, 374–388. [Google Scholar] [CrossRef]
- Palulli, R.; Brouzet, D.; Talei, M.; Gordon, R. A comparative study of flame-wall interaction and flame-cooling air interaction. Int. J. Heat Fluid Flow 2021, 92, 108888. [Google Scholar] [CrossRef]
- Palulli, R.; Talei, M.; Gordon, R.L. Analysis of near-wall CO due to unsteady flame-cooling air interaction. Flow Turbul. Combust. 2021, 107, 343–365. [Google Scholar] [CrossRef]
- Greifenstein, M.; Dreizler, A. Influence of effusion cooling air on the thermochemical state of combustion in a pressurized model single sector gas turbine combustor. Combust. Flame 2021, 226, 455–466. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Wang, H.Y.; Mcdonell, V.; Sowa, W.; Samuelsen, G.S. Characterization of a two-phase flow field downstream of a 3x-scale gas turbine co-axial, counter-swirling, combustor dome swirl cup. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar]
- Wang, H.Y.; McDonell, V.G.; Sowa, W.A.; Samuelsen, G.S. Experimental study of a model gas turbine combustor swirl cup, part I: Two-phase characterization. J. Propuls. Power 1994, 10, 441–445. [Google Scholar] [CrossRef]
- Wang, H.Y.; McDonell, V.G.; Sowa, W.A.; Samuelsen, G.S. Scaling of the two phase flow downstream of a gas turbine combustor swirl cup: Part I: Mean quantities. J. Eng. Gas Turbines Power 1993, 115, 453–460. [Google Scholar] [CrossRef]
- Sánchez, A.L.; Urzay, J.; Liñán, A. The role of separation of scales in the description of spray combustion. Proc. Combust. Inst. 2015, 35, 1549–1577. [Google Scholar] [CrossRef]
- Gokulakrishnan, P.; Ramotowski, M.J.; Gaines, G.; Fuller, C.; Joklik, R.; Eskin, L.D.; Klassen, M.S.; Roby, R.J. Experimental Study of NOx Formation in Lean, Premixed, Prevaporized Combustion of Fuel Oils at Elevated Pressures. In Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, QC, Canada, 14–17 May 2007. [Google Scholar]
- Zhang, M.; Fu, Z.; Li, J.; Lin, Y. CFD Approach to the Research and Design of Low Emission Commercial Aircraft Engine Combustor. Procedia Eng. 2011, 17, 616–617. [Google Scholar]
- Zhang, M.; Fu, Z.; Lin, Y.; Li, J. CFD study of NOx emissions in a model commercial aircraft engine combustor. Chin. J. Aeronaut. 2012, 25, 854–863. [Google Scholar] [CrossRef]
- Meisl, J.; Koch, R.; Kneer, R.; Wittig, S. Study of NOx emission characteristics in pressurized staged combustor concepts. Symp. (Int.) Combust. 1994, 25, 1043–1049. [Google Scholar] [CrossRef]
- Eckstein, J.; Freitag, E.; Hirsch, C.; Sattelmayer, T. Experimental study on the role of entropy waves in low-frequency oscillations in a RQL combustor. J. Eng. Gas Turbines Power 2006, 128, 264–270. [Google Scholar] [CrossRef]
- Fu, Y.; Jeng, S.M.; Tacina, R. Characteristics of the swirling flow generated by an axial swirler. In Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005. [Google Scholar]
- Ajmani, K.; Mongia, H.C.; Lee, P. Assessment of CFD approaches for next-generation combustor design. In Proceedings of the ASME 2014 Gas Turbine India Conference, New Delhi, India, 15–17 December 2014. [Google Scholar]
- Szedlmayer, M.T. An Experimental Study of the Velocity-Forced Flame Response of a Lean-Premixed Multi-Nozzle can Combustor for Gas Turbines. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 13 June 2013. [Google Scholar]
- Fanaca, D.; Alemela, P.R.; Hirsch, C.; Sattelmayer, T. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber. J. Eng. Gas Turbines Power 2010, 132, 071502. [Google Scholar] [CrossRef]
- Kao, Y.H.; Tambe, S.B.; Jeng, S.M. Aerodynamics study of a linearly-arranged 5-swirler array. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Kao, Y.H. Experimental Investigation of Aerodynamics and Combustion Properties of a Multiple-Swirler Array. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 28 March 2014. [Google Scholar]
- Kao, Y.H.; Tambe, S.B.; Jeng, S.M. Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment. In Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, TX, USA, 3–7 June 2013. [Google Scholar]
- Rojatkar, P.; Kao, Y.H.; Jog, M.A.; Jeng, S.M. Effect of swirler offset on aerodynamics of multiswirler arrays. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Kao, Y.H.; Denton, M.; Wang, X.; Jeng, S.M.; Lai, M.C. Experimental spray structure and combustion of a linearly-arranged 5-swirler array. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Mazzei, L.; Andreini, A.; Facchini, B.; Turrini, F. Impact of swirl flow on combustor liner heat transfer and cooling: A numerical investigation with hybrid RANS-LES models. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Dolan, B.; Villalva Gomez, R.; Gutmark, E. Parametric study of alternating flow patterns in non-reacting multiple-swirl flows. Flow Turbul. Combust. 2018, 100, 437–455. [Google Scholar] [CrossRef]
- Dolan, B.; Gomez, R.V.; Pack, S.; Gutmark, E. Measurements and analysis of alternating flow patterns in a multinozzle combustor. AIAA J. 2017, 55, 161–170. [Google Scholar] [CrossRef]
- Gao, W.; Yang, J.; Mu, Y.; Liu, F.; Wang, S.; Wang, K.; Liu, C.; Xu, G.; Zhu, J. Injector-injector interactions on the flow field, spray characteristics, and subsequent flame pattern in an annular combustor. Int. J. Heat Fluid Flow 2022, 98, 109066. [Google Scholar] [CrossRef]
- Andreini, A.; Facchini, B.; Insinna, M.; Mazzei, L.; Salvadori, S. Hybrid RANS-LES modeling of a hot streak generator oriented to the study of combustor-turbine interaction. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Koupper, C.; Caciolli, G.; Gicquel, L.; Duchaine, F.; Bonneau, G.; Tarchi, L.; Facchini, B. Development of an engine representative combustor simulator dedicated to hot streak generation. J. Turbomach. 2014, 136, 111007. [Google Scholar] [CrossRef]
- Semlitsch, B.; Hynes, T.; Langella, I.; Swaminathan, N.; Dowling, A.P. Entropy and vorticity wave generation in realistic gas turbine combustors. J. Propuls. 2019, 35, 839–849. [Google Scholar] [CrossRef]
- Kariuki, J.; Worth, N.; Dawson, J.; Masktorakos, E. Visualisation of blow-off events of two interacting turbulent premixed flames. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Durox, D.; Prieur, K.; Schuller, T.; Candel, S. Different flame patterns linked with swirling injector interactions in an annular combustor. J. Eng. Gas Turbines Power 2016, 138, 101504. [Google Scholar] [CrossRef]
- Dolan, B.J.; Villalva Gomez, R.; Pack, S.; Candel, S. Effect of nozzle spacing on NOx emissions and lean operability. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Dolan, B.; Gomez, R.V.; Gutmark, E. Optical measurements of interacting lean direct injection fuel nozzles with varying spacing. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Kwong, W.Y.; Steinberg, A.M. Effect of internozzle spacing on lean blow-off of a linear multinozzle combustor. J. Propuls. Power 2020, 36, 540–550. [Google Scholar] [CrossRef]
- Jella, S.; Bergthorson, J. Injector spacing influences on flame blow-off in a linear array. Proc. Combust. Inst. 2023, 39, 4831–4840. [Google Scholar] [CrossRef]
- Shamma, M.; Hoffmann, S.; Harth, S.R.; Zarzalis, N.; Trimis, D.; Koch, R.; Bauer, H.J.; Langone, L.; Galeoi, S.; Andreini, A. Investigation of adjacent lifted flames interaction in an inline and inclined multi-burner arrangement. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, Online, 7–11 June 2021. [Google Scholar]
- Shamma, M.; Harth, S.; Trimis, D. Experimental investigation of multi-burner array with lean lifted spray flames in inline and inclined configurations. Appl. Energy Combust. Sci. 2024, 17, 100246. [Google Scholar] [CrossRef]
- Cho, C.H.; Sohn, C.H.; Cho, J.H.; Kim, H.S. Effects of burner interaction on Nox emission from swirl premix burner in a gas turbine combustor. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Kwak, S.; Choi, J.; Ahn, M.; Lee, M.C.; Yoon, Y. Effects of flame-flame interaction on emission characteristics in gas turbine combustors. Aeronaut. J. 2022, 126, 1414–1429. [Google Scholar] [CrossRef]
- Philip, M.; Boileau, M.; Vicquelin, R.; Riber, E.; Schmitt, T.; Cuenot, B.; Durox, D.; Candel, S. Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc. Combust. Inst. 2015, 35, 3159–3166. [Google Scholar] [CrossRef]
- Marrero-Santiago, J.; Verdier, A.; Brunet, C.; Vandel, A.; Godard, G.; Cabot, G.; Boukhalfa, M.; Renou, B. Experimental study of aeronautical ignition in a swirled confined jet-spray burner. J. Eng. Gas Turbines Power 2018, 140, 021502. [Google Scholar] [CrossRef]
- Marrero-Santiago, J.; Verdier, A.; Vandel, A.; Cabot, G.; Boukhalfa, A.M.; Renou, B. Effect of injector spacing in the light-around ignition efficiency and mechanisms in a linear swirled spray burner. Heat Mass Transf. 2019, 55, 1871–1885. [Google Scholar] [CrossRef]
- Bourgouin, J.F.; Durox, D.; Schuller, T.; Beaunier, J.; Candel, S. Ignition dynamics of an annular combustor equipped with multiple swirling injectors. Combust. Flame 2013, 160, 1398–1413. [Google Scholar] [CrossRef]
- Philip, M.; Boileau, M.; Vicquelin, R.; Schmitt, T.; Durox, D.; Bourgouin, J.F.; Candel, S. Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments. J. Eng. Gas Turbines Power 2015, 137, 031501. [Google Scholar] [CrossRef]
- Prieur, K.; Durox, D.; Beaunier, J.; Schuller, T.; Candel, S. Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection. Proc. Combust. Inst. 2017, 36, 3717–3724. [Google Scholar] [CrossRef]
- Lancien, T.; Prieur, K.; Durox, D.; Candel, S.; Vicquelin, R. Large eddy simulation of light-round in an annular combustor with liquid spray injection and comparison with experiments. J. Eng. Gas Turbines Power 2018, 140, 021504. [Google Scholar] [CrossRef]
- Prieur, K.; Vignat, G.; Durox, D.; Schuller, T.; Candel, S. Flame and spray dynamics during the light-round process in an annular system equipped with multiple swirl spray injectors. J. Eng. Gas Turbines Power 2019, 141, 061007. [Google Scholar] [CrossRef]
- Lancien, T.; Prieur, K.; Durox, D.; Candel, S.; Vicquelin, R. Leading point behavior during the ignition of an annular combustor with liquid n-heptane injectors. Proc. Combust. Inst. 2019, 37, 5021–5029. [Google Scholar] [CrossRef]
- Philip, M.; Boileau, M.; Vicquelin, R.; Schmitt, T.; Durox, D.; Bourgouin, J.F.; Candel, S. Ignition sequence of an annular multi-injector combustor. Phys. Fluids 2014, 26, 091106. [Google Scholar] [CrossRef]
- Töpperwien, K.; Puggelli, S.; Vicquelin, R. Analysis of flame propagation mechanisms during light-round in an annular spray flame combustor: The impact of wall heat transfer and two-phase flow. Combust. Flame 2022, 241, 112105. [Google Scholar] [CrossRef]
- Machover, E.; Mastorakos, E. Spark ignition of annular non-premixed combustors. Exp. Therm. Fluid Sci. 2016, 73, 64–70. [Google Scholar] [CrossRef]
- Bach, E.; Kariuki, J.; Dawson, J.R.; Mastorakos, E.; Bauer, H.J. Spark ignition of single bluff-body premixed flames and annular combustors. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Machover, E.; Mastorakos, E. Experimental investigation on spark ignition of annular premixed combustors. Combust. Flame 2017, 178, 148–157. [Google Scholar] [CrossRef]
- Ciardiello, R.; Magalhães de Oliveira, M.; Skiba, A.W.; Mastorakos, E.; Allison, P.M. Effect of spark location and laminar flame speed on the ignition transient of a premixed annular combustor. Combust. Flame 2020, 221, 296–310. [Google Scholar] [CrossRef]
- Machover, E.; Mastorakos, E. Numerical investigation of the stochastic behavior of light-round in annular non-premixed combustors. Combust. Sci. Technol. 2017, 189, 1467–1485. [Google Scholar] [CrossRef]
- Xia, Y.; Linghu, C.; Zheng, Y.; Ye, C.; Ma, C.; Ge, H.; Wang, G. Experimental investigation of the flame front propagation characteristic during light-round ignition in an annular combustor. Flow Turbul. Combust. 2019, 103, 247–269. [Google Scholar] [CrossRef]
- Ye, C.; Wang, G.; Fang, Y.; Ma, C.; Zhong, L.; Moreau, S. Ignition dynamics in an annular combustor with gyratory flow motion. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Zhao, D.; Xia, Y.; Ge, H.; Lin, Q.; Zou, J.; Wang, G. Simulations of flame propagation during the ignition process in an annular multiple-injector combustor. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 1947–1964. [Google Scholar] [CrossRef]
- Gao, W.; Yang, J.; Mu, Y.; Liu, F.; Wang, S.; Zhao, Q.; Wang, K.; Liu, C.; Xu, G. Experimental investigation on spark ignition of a staged partially premixed annular combustor. Fuel 2021, 302, 121062. [Google Scholar] [CrossRef]
- Gao, W.; Wang, S.; Liu, F.; Mu, Y.; Wang, K.; Zhu, J.; Xu, G.; Liu, C.; Yang, J. Comparison of ignition characteristics between annular and multi-sector combustor. J. Energy Inst. 2022, 104, 55–66. [Google Scholar] [CrossRef]
Research Institution | Method | Type of Fuel | Number of Swirlers | Equivalence Ratio | Reference |
---|---|---|---|---|---|
EM2C | Experimental | Propane | 16 | Φ = 0.7–1.1 | [60,61,64,65] |
Experimental | Liquid n-heptane | 16 | Φ = 0.68 | [66] | |
Experimental | Liquid n-heptane | 16 | Φ = 0.7–1.1 | [65,67,68] | |
Experimental | Liquid dodecane | 16 | Φ = 0.7–1.1 | [65] | |
LES | Propane | 16 | Φ = 0.74 | [60,61,62,63,64,69] | |
LES | Liquid n-heptane | 16 | Φ = 0.89 | [66,68,70] | |
Cambridge University | Experimental | Methane | 12 | Φ = 0.3–0.4; 0.6–0.9; 0.75–1 | [71,72,73,74] |
Experimental | Methane | 15 | Φ = 0.3–0.4 | [71] | |
Experimental | Methane | 18 | Φ = 0.3–0.4; 0.7; 0.75–1 | [71,73,74] | |
Experimental | Methane | 12 | Φ = 0.58–0.9 | [74] | |
Experimental | Methane | 18 | Φ = 0.58–0.9 | [74] | |
Numerically | Methane | 12,15,18 | Φ = 0.3–0.4 | [75] | |
Zhejiang University | Experimental | Propane | 16 | Φ = 0.67–0.86; 0.7–0.9 | [76,77] |
Numerical | Propane | 16 | Φ = 0.7 | [78] | |
Chinese Academy of Sciences | Experimental | RP-3 kerosene | 18 | Φ = 0.34–1.3 | [46,79,80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Hui, X.; Xue, X.; An, Q.; Yu, S. Flame–Flame Interactions and Jet–Jet Interactions in Gas Turbine Swirl Combustors. Energies 2025, 18, 390. https://doi.org/10.3390/en18020390
Wei W, Hui X, Xue X, An Q, Yu S. Flame–Flame Interactions and Jet–Jet Interactions in Gas Turbine Swirl Combustors. Energies. 2025; 18(2):390. https://doi.org/10.3390/en18020390
Chicago/Turabian StyleWei, Wei, Xin Hui, Xin Xue, Qiang An, and Shiyang Yu. 2025. "Flame–Flame Interactions and Jet–Jet Interactions in Gas Turbine Swirl Combustors" Energies 18, no. 2: 390. https://doi.org/10.3390/en18020390
APA StyleWei, W., Hui, X., Xue, X., An, Q., & Yu, S. (2025). Flame–Flame Interactions and Jet–Jet Interactions in Gas Turbine Swirl Combustors. Energies, 18(2), 390. https://doi.org/10.3390/en18020390